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ABSTRACT ‘The Theory of a Cartographic Line’ (Peucker 1975) describes width as being the essential
characteristic of a cartographic line. Digital representatuons have tended to ignore this basic attribute
and 1n the context of generalization the oversight is detrimental. The theory claims that a set of
enclosing bands captures the cartographic character of width and supports generalization. The Douglas
algoiithm, still one of the most commonly used algorithms for generalizing digital representations, uses
this model. Work of a Polish mathematician Perkal, provides the basis for another model of cartographic
line width and a different generalization technique. This paper examines how effectively both models
capture cartographic line width and succeed in producing generalized results, particularly for larger
scale reductions. The two techniques are assessed by their abuility to satisfy two objectives: capturing the
essential and recognizable characteristics of geographic features and creating representations which can
be legibly displayed at smaller scales. The paper compares the behavior of the two methods as applied
to digital coastline data.

1. INTRODUCTION

Typically, an objective of cartographic generalization is to remove detail while
retaining important information content and recognizable characteristics of the
geography being represented (Pannekoek 1962, Tobler 1964, Jenks 1981, Imhof
1982). Another primary objective is to assure a legible representation (Pannekoek
1962, Robinson 1984, Keates 1989, Muller 1989). Both objectives must be satisfied
for effective results. The challenge for automation thus becomes to define ‘impor-
tant’ information or recognizable character, to assure legibility by locating and
resolving spatial conflicts, and to relate these measures to desired scales. In the
ideal case it should be possible to specify a target scale and have an automated
process produce the appropriate generalization.

Asignificant amount of research in automated generalization has been devoted
to techniques for capturing essential character or avoiding spatial conflicts (Macka-
ness 1987, Buttenfield 1989, Monmonier 1989, Muller 1990), but satisfaction of both
objectives has not generally been used as performance criteria. Mathematical
measures have been applied more frequently (McMaster 1983, McMaster 1987), but
as Visvalingam and Whyatt (1990) point out, these can be inappropriate and
misleading. This paper begins with a discussion of these generalization objectives
and the ability to relate them to changes in scale.

1.1 Defining Importance

Humans have no difficulty identifying important information content, but transfer-
ing this skill to the computer is no easy task. The importance of cartographic
features varies with the purpose of a map and is often a complex function of spatial
context, thematic significance, or some combination of these. For example, a city
may be important based on its large population, on its strategic location at the
mouth of a river, or other more subjective criteria.
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Generalization algorithms, to date, have not developed sophisticated defini-
tions of importance, but rely primarily on geometric criteria (Zoraster 1984, Mc-
Master 1987). Geometric criteria which have been used as measures of importance
include size, shape, inflection points, and intersections (Pavlidis 1978). With respect
to line generalization, the identification of critical points (end points, inflection
points, local maxima and minima) has received the most attention (Freeman 1978,
Marino 1979, Dettori 1982, Thapa 1988). While geometric criteria alone cannot
provide a complete definition of importance they play a useful role.

Often the importance of geographic features is scale dependent, thus instruc-
tions to the computer to identify and retain important information should be
sensitive to the degree of scale change. In using geometric criteria, we should
consider whether the definition of importance is valid for a broad range of scales
or applicable only to a specific scale range. For example, a geometric measure of
importance may generate effective results for a scale change of 1:24,000 to 1:50,000
but produce unacceptable results for a scale change from 1:24,000 to 1:250,000.

1.2 Maintaining Legibility

Maps represent geographic information through the construction of physical marks
on paper. It is clear that as scale is decreased the total space available for these
marks decreases, and the same size marks collide and overlap at smaller scales. This
phenomenon requires that information (marks) be removed or modified to remain
legible. Legibility requirements have been well documented by cartographers and
map product specifications. These typically include the minimum dimensions of
marks and minimum spacings between them. In contrast to importance, the
relationship between scale and legibility is well known or at least predictable. For
a given target scale and projected viewing distance, we can compute the minimum
size, length, and spacing between objects required to clearly display them. The
minimum size and length thresholds are straight forward to apply, for example, a
filter which removes features below a specified size threshold. The challenge,
however, is to locate where minimum spacing thresholds have been violated and
apply corrective actions.

In the manual process of generalization, the physical width of a line symbol
provides direct visual evidence of potential conflicts so a cartographer can see
where modifications need to be made. Indeed a common practice in manual
generalization is to use a wide pen to draft a generalized line. The wide pen is
required for photo reductions but it also helps to visualize the potential collision
of symbols that may occur for a particular scale reduction. The width of a carto-
graphic line thus plays an important role in generalization. Indeed, the minimum
spacing threshold between objects must account for the width of the graphic
symbol (see Figure 1). This factor is obvious in a graphic medium, but has tended
to be overlooked in the electronic environment.

The next section discusses computer representations of cartographic lines and
cartographic line width in particular. Subsequent sections discuss the two models

of cartographic lines and associated generalization processes. Both models are
vector representations in which lines or boundaries of areas are modeled by
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FIGURE 1. The minimum separation between marks
must account for the symbolized width (4) rather
than the distance between centroids or centerlines
of marks (a).

straight line segments between points. The final section reports on the application
of the two generalization methods to three geographically different coastline data
sets. The generalized results produced by each method are then compared to
results produced by traditional manual generalization.

2. BACKGROUND

2.1 Computer Representations of Cartographic Lines

The traditional mathematical representation of a line is as a locus of zero width.
Although there are numerous mathematical expressions for a line, one way to
express such a line is as:

L = an infinite set of points where points are represented by an ordered pair of
coordinates

The typical vector representation of a cartographic line described in this paper
approximates this mathematical concept of a line by a finite number of points and
straight lines connecting them. True to the mathematical concept, this approxima-
tion maintains zero width.

Manipulations of vector models in a geographic information system generally
do not take the symbolized widths of lines into account. When the operation is
generalization and the product is a reduced scale display, the oversight becomes
critical. In fact, when symbolization is considered only after generalization, results
are often disappointing. Analysis and display operations could both benefit from
incorporation of some explicit expression of width that captures the behavior of
a cartographic line. A raster representation is one alternative as it expresses all
objects as having some width. A raster model, however, cannot represent a line as
having constant width. The width varies depending on cell shape, size, and orienta-
tion of a line with respect to cell orientation. The alternative to the raster model
is a vector model which expresses the cartographic characteristic of width. Two
types of bands have been used to approximate width in vector models.

2.1 Expressing Width by Rectangular Bands
Poiker, in this Theory of a Cartographic Line (Peucker 1975) emphasized the
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FIGURE 2. A cartographic line
represented by a bounding rec-
tangular band.

essential characteristic of the cartographic line as “having always a certain thick-
ness”. He proposed that a line of any extent can be defined by a general direction
and a band with a width and a length (See Figure 2). The width of the band is
assumed to approximate the width of the line.

In the Poiker model, as a line is decomposed into sub—component line seg-
ments, corresponding bands can be constructed in which the width of each sub-
band approximates the width of the enclosed line segment. For a line L with n
points (L = p/1 < i< n) the width of the band, w, is a function of two points,
w(pk'pj) and is a minimum real value such that all points in the part of the line
between k and j are within the band. Because width is a function of different point
combinations it is not constant. The set of widths includes wm(p,-'pj), 1=m=n-—1
with values ranging from zero to the width of the band enclosing the entire line.
Ballard (1981) expanded on this concept with the introduction of strip trees to
represent lines as having locally varying thickness.

Poiker (Peucker 1975) suggested that the enclosing bands can represent
different levels of abstraction of the line. The single band enclosing the entire line
provides the highest level of abstraction. As the line is iteratively decomposed, the
sets of resulting sub-bands provide increasingly more detailed representations of the
line. The progression of bands can therefore reflect the cartographic phenomena
of increasing width and greater abstraction associated with more generalized or
smaller scale representations (See Figure 3).

These bands, however, deviate from symbolized line width in two ways. One
difference is that the width of a cartographic line symbol is constant over its length
(at least within the capability of the pen or print medium to maintain constant
width). The other difference is that the approximating bands at the limit reduce
to zero width while a graphic line always maintains some width.
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FIGURE 3. The progression of bands going from zero width to the widest, most abstract representation
of the line. The band reduces to zero width for two point line segments.

2.2 Generalization Based on Enclosing Bands

The Douglas (Douglas and Peucker 1973) algorithm utilizes the band approxi-
mation as a basis for generalization of a line. The algorithm begins with construc-
tion of a trend line linking start and end points (p;'p; in Figure 4). For points along
the line, the vertical distance to the trend line is computed and the point with
maximum absolute deviation from the trend line is retained (p,, in Figure 4). This
point becomes a new anchor point for the trend line and the process continues
until the maximum absolute distance no longer exceeds a pre-set threshold or
tolerance. The points of maximum deviation and the anchor points dimension the
band and the process iterates until the width of all sub-bands is less than or equal
to the tolerance. The selected points (maximum deviation points) provide a new
representation of the line, with all intermediate points being eliminated.

Points which are retained in this process have been described as critical points,
similar to points a cartographer would select to represent a line (Marino 1979,
White 1985, Jenks 1989). In other words, the selected points are those deemed to
be important for maintaining the essential or recognizable character of the line.
In this case, importance or essential character has been geometrically defined as
a pre-set distance from a trend line. The validity of this criteria as a measure of
importance was empirically established by both Marino (1979) and White (1985).
We could therefore state that the algorithm meets the generalization objective of
retaining important information. White’s and Marino’s studies, however, only tested
for importance in the context of individual line segments. The Douglas algorithm,
while it effectively defines important features within a line, may not successfully
define them for a region. In the context of a map sheet or larger geographic area,
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FIGURE 4. Generalization is accomplished by first constructing a trend line between end points pi and
pj. Distances to the trend line are computed from points along the line and the point with the maxi-
mum absolute deviation (Pm) from the line is retained. This point becomes a new anchor point and
the process iterates for each new segment until the maximum deviation no longer exceeds the toler-
ance.

the inflection or critical points within a line are often not the important informa-
tion. Thapa (1988) and Monmonier (1986) made similar findings. ’

Maintenance of legibility is not a concern addressed by this algorithm. The
band-width is not used as a cartographer uses symbol width to detect spatial colli-
sions of a line with itself or other nearby objects. Rather the band serves as a
frequency filter that iteratively removes the highest frequencies from a line. It
controls for minimum amplitude of curves but not for a minimum spacing between
objects including the line with itself. The band-width provides no direct evidence
to indicate that legibility has been compromised, and because the band-width does
not truly represent the width of the line there is no robust correspondence be-
tween a desired scale reduction and the band-width.

2.8 Perkal’s Epsilon Band

An alternative to the rectangular band approximation of line width is the epsilon
band. Perkal (1966b) described an epsilon band of a line L as the neighborhood
N," which includes all points on the plane not more than epsilon distance from L.
Assuming a distance d(x'p) between any point p and a point x on L the epsilon
neighborhood can be described as:

N(L) = {pld(x'p) = ¢

Figure 5 shows this neighborhood as a band of width 2e enclosing line L plus two
semicircles of radius e. This epsilon band describes the locus of a line and an
associated width. A new width is expressed simply by changing the value of &. The
value of € is not a function of points along the line therefore the width is constant
for the length of the line and the band does not reduce to zero unless ¢ is explicit-
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FIGURE 5. An example of a line
with its epsilon band e.

S o

FIGURE 6. An example of a line which is not e-convex.

ly set to zero. The epsilon band thus provides a model which more truly reflects
the behavior of a cartographic line.

The most important phenomenon of the epsilon band for generalization,
however, is the associated e-convex set (Perkal 1966b). A line is e-convex if every
point on the line has a radius of curvature greater than or equal to €. A line which
is not g-convex expresses the case in which a line having width 2& folds back on
itself as shown in Figure 6. Lack of e-convexity in a line is therefore direct evidence
that legibility has been compromised and generalization is required.

2.4 Generalization Based on the Epsilon Band

From the concept of e-convexity, Perkal (1966a) demonstrated a generalization
method. Perkal’s method for generalizing a region M began with the placement of
a circle of diameter ¢ inside the region. The circle was then rotated in such a
manner that it remained completely inside the area. The & generalization of M is
thus the set of all points p having the property that they are contained within the
circle of diameter &, which can be completely included within the region M. This
same process can be applied to the region outside M or the complement of M,
designated M . If the region is not g-convex, there will be points in both M and M
that the circle will not touch. Examples of such areas are shown as shaded areas in
Figure 7.
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FIGURE 7. An epsilon generalization of Region M.

The result of the two generalizations is a new boundary for M and a new
boundary for M'. Areas between the two boundaries are regions too small to
accommodate a circle of diameter £ and thus lack e-convexity. If this figure were
to be drawn with a pen of width 2¢, the shaded areas will be areas of overlap or
symbol collision and are the areas which will need to be generalized if they are to
be legibly displayed. As applied to areas, lack of e-convexity on the interior (or
inability to place the circle in an area) signals that an area is too small to be
legible.

As a generalization method, the procedure directly addresses the issue of
legibility. By establishing e-convexity where £ is equal to the minimum spacing
threshold plus line width, it can assure legibility. The technique first controls for
legibility by detecting areas of overlap and secondly by providing a corrective
solution. If violations are discovered, e-convexity can be achieved by employing
either the interior or exterior trace of the circle.

With respect to defining importance, the algorithm is not definitive, but
indirectly the geometric criteria of size and shape dictate importance. The general
implication is that features with dimensions smaller than & are not important and
can therefore be removed. However, if certain features are deemed important, say
by external user supplied criteria, the exterior and/or interior trace can provide
a solution to achieve g-convexity so features can be legibly retained.

2.5 The WHIRLPOOL Implementation of Epsilon Generalization

Perkal only applied his procedure manually. As Zoraster (1984) points out, the task
of rolling a circle along a curve is not easily implemented in the computer. Brophy
(1978) made one of the first attempts at a computer implementation of epsilon
generalization. The ODYSSEY WHIRLPOOL algorithm (Dougenik 1980), while not a
direct implementation of Perkal’s concept, is a close approximation. The algorithm
does not construct an £ envelope, but assures e-convexity in the result. The algo-
rithm operates on a distance threshold ¢ comparable to e. Clusters of points within
t of each other are analyzed and points are removed from the clusters such that no
two points are within ¢ of each other and no points are moved more than ¢ (Chris-
man 1983). This assures that all resulting objects are at least ¢ distance apart and
that no line symbol of ¢ width will intersect or overlap itself (i.e., e-convexity is
imposed). Figure 8 illustrates the operation of the algorithm.
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a) c)

FIGURE 8. Generalization is accomplished by a cluster analysis. Clusters are formed of points within t of
each. Poinst a and b form one cluster, c and d another, and points e, f and g, a third cluster. The
cluster analysis requires that no points may be within t of one another and no points may move more
than t. In the above clusters, only one point survives, and all other points in the cluster snap to that
point. Any co-linear segments are then removed to create the final result.

Application of the WHIRLPOOL algorithm to generalization has been demon-
strated by Chrisman (1983) and Beard (1988). The process results in the elimi-
nation of small areas and narrow features and the attachment of small features to
larger ones where the intervening distance is sub-threshold. As it assures that no
points are closer than a specified distance, it controls for sub-threshold areas, sub-
threshold length segments, and sub-threshold spacings within and between objects.
Because these thresholds are directly related to scale, the tolerance ¢ can be set to
these thresholds plus line width to produce a generalization appropriate for a
desired scale reduction.

Although the WHIRLPOOL algorithm and the Douglas (1973) algorithm both
use a tolerance distance as the criteria for retaining or removing information to
generalize a representation, the end results are quire different. The WHIRLPOOL
algorithm removes information based on distances within and between objects. The
tolerance, as used by the algorithm, directly corresponds to the minimum size
objects which can be displayed at a particular line width. The Douglas algorithm,
as described above, filters information based on deviations from a trend line. The
tolerance thus defines a frequency level and determines the frequencies which will
be removed. It does not correspond to symbolized line width. The next section
provides tests to illustrate the different performance of the two algorithms particu-
larly as the degree of generalization is increased.

3. TESTS OF THE TWO METHODS

Three test data sets were used to demonstrate generalization performance and to
test the behavior of the two methods with respect to different spatial patterns and
levels of detail. The test sets included digital coastline data for North Carolina,
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FIGURE g. Detailed version of the Maine coastline around South Bristol.

South Carolina, and Maine provided by the National Ocean Service (NOS). These
data were digitized by NOS from 1:10,000 to 1:80,000 scale charts. The different
coastal geomorphology in each geographic area presents different challenges for
the generalization methods. Figures g—11 show the three test areas. Geomorphologi-
cal differences in the three sections of coastline are reflected in differences in the
distribution of graphic primitives used to represent them. The numbers of points
in each test file were approximately the same, but configurations of the points are
quite different. Table 1 shows the distribution of points, chains, maximum length
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FIGURE 10. Detailed version of North Carolina coastline at the mouth of the Pango River on Pamlico

i

FIGURE 11. Detailed version of South Carolina coastline inside Isle of Palms on the inner coastal
waterway.
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TABLE 1. DISTRIBUTION OF POINTS, CHAINS AND POLYCONS FOR THE THREE TEST SECTIONS

Section #Point #Chains #Polygons Maximum Chain Length
Maine 2697 97 63 516
North Carolina 2598 26 12 823
South Carolina 2491 222 173 229

TABLE 2. SIZE DISTRIBUTION OF POLYGONS FOR THE THREE TEST SITES

Polygon size (in hectares)

Section 0-10 10-50 50100 100-500 500—1000 >1000
Maine
water 8 1 1 1 0 1
land 44 3 o] 1 1 2
North Carolina
water 1 1 o] 2 o] 1
land 4 [} 0 o 1 2
South Carolina
water 2 1 [ [ 1 o
land 164 4 2 3 [0} [

of chains, and numbers of polygons for the three test areas, and Table 2 illustrates
the size distribution of land and water polygons for each test site.

The Maine coastline data contains polygons with an essentially bi-modal size
distribution. This section also includes a number of long, complex chains. The
challenge for a generalization process in this section is handling the small islands
which lie close to each other and to the headlands. The North Carolina section
contains the least number of polygons but the longest and most complex chains.
This section of coastline tests the ability of the generalization methods to handle
complex line detail without the interaction of other nearby objects. The South
Carolina site contains the largest number of polygons and the least complex chains.
This site includes many small islands which are very closely spaced. In fact, the
spacing between islands is approximately the same as the interior dimensions of the
islands. The interesting issue here is whether the islands should convert to a land
mass, or the network of channels expand to become a solid body of water at a
coarser resolution.

To perform the test, the data were converted from the NOS transfer format to
topologically structured ODYSSEY files. The data, which were transferred in lati-
tude/longitude, were transformed to Universal Transverse Mercator (UTM)
coordinates using National Geodetic Survey (NGS) transformation routines. A local
offset was subtracted from the UTM coordinates to maintain precision in subsequent
processing. Each test site was processed in an identical manner.

The Douglas (D) and WHIRLPOOL (W) algorithms were applied independently
to the three test data sets using progressively larger tolerances. The tolerances were
increased in increments of ten meters for each iteration. Table g shows the results
for the South Carolina data. For this data, small D tolerances removed points
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TABLE 8. THE NUMBER OF POINTS removed from the South Carolina data as the D and W tolerances were
increased from 10 to 100 meters.

2600 +—
2400 X
@ 2200 137X
€ 2000 ““,
S 1800
& 1600 Zh
© 1400 2
o 1200 N\
L 1000 S\
€
5 800 ~
Z 600 Ty
400 e
200 7 S g S ——
0 T + — 1
0 50 100 150, 200 250
Tolerance
@ Douglas algorithm -& WHIRLPOOL algorithm

rapidly up to forty meters, at which point the effect of the tolerance leveled off.
The w algorithm actually generated points for the first ten meter tolerance. It then
removed points at a slower rate over the same tolerance range up to 120 meters.
Beyond 120 meters, the W tolerance removed points at a slightly faster rate than the
D algorithm. For the South Carolina data set, D tolerances larger than forty meters
began to generate line crossings. The graphic results of these tests for the 50, 100,
150, and 200 meter tolerances are displayed in Figures 12 through 15. The toler-
ances are shown as small circles in the lower left corners. It is important to notice
that many small channels and inlets are retained by the Douglas algorithm. In the
WHIRLPOOL results we can see that small channels and islands which would not
accommodate a circle of diameter ¢ have been removed. The other effect to notice
is that the algorithm breaks channels and peninsulas at locations too narrow to
accommodate a circle of ¢t diameter. This is, in most cases, an undesirable effect of
the algorithm.

Table 4 summarizes the results of the Douglas and WHIRLPOOL algorithms
applied to the North Carolina data. Similarly, small D tolerances removed points
quite rapidly up to about fifty meters. At this tolerance, the rate of point elimi-
nation dropped off and beyond 150 meters the number of points removed by each
larger tolerance began to converge with the numbers eliminated by the w algo-
rithm. The graphic results of both algorithms for 50, 100, 150, and 200 meter
tolerances are shown in Figures 16-19. The tolerances are shown as small circles
in the lower center of the plots. We can see in these results that the WHIRLPOOL
algorithm iteratively removes the smallest/most narrow channels while the Douglas
algorithm retains these and produces very spiky results.

Table 5 summarizes the results of applying the two algorithms to the Maine
data. The results are quite similar to those for the North Carolina data. The
Douglas algorithm removes points rapidly for small tolerances but the removal rate
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FIGURE 12. South Carolina coastline plotted at 1:50,000 scale: a. Douglas algorithm — 50 meter tolerance;

b. WHIRLPOOL algorithm — 50 meter tolerance.
Note: Figures 12 o 19 are published at a reduction of 50 %.
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FIGURE 13. South Carolina coastline plotted at 1:50,000 scale: a. Douglas algorithm ~ 100 meter toler-
ance; b, WHIRLPOOL algorithm ~ 100 meter tolerance.
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FIGURE 14. South Carolina coastline plotted at 1:50,000 scale: a. Douglas algorithm - 150 meter toler-

ance; b. WHIRLPOOL algorithm — 150 meter tolerance.
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FIGURE 15. South Carolina coastline plotted at 1:50,000 scale: a. Douglas algorithm — 200 meter toler-

ance; b. WHIRLPOOL algorithm — 200 meter tolerance.
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FIGURE 16. North Carolina coastline plotted at 1:50,000 scale: a. Douglas algorithm — 50 meter tolerance;

b. WHIRLPOOL algorithm — 50 meter tolerance.
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FIGURE 17. North Carolina coastline plotted at 150,000 scale: a. Douglas algorithm — 100 meter tolerance;

b. WHIRLPOOL algorithm - 100 meter tolerance.
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FIGURE 18. North Carolina coastline plotted at 150,000 scale: a. Douglas algorithm ~ 150 meter tolerance;
b. WHIRLPOOL algorithm ~ 150 meter tolerance.
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FIGURE 19. North Carolina coastline plotted at 150,000 scale: a. Douglas algorithm - 200 meter tolerance;
b. WHIRLPOOL algorithm ~ 200 meter tolerance.

levels off at tolerances over 100 meters. The graphic results of both algorithms for
50, 100, 150, and 200 meter tolerances are shown in Figures 20-23. The tolerances
are shown as small circles in the lower left corners of the plots. In this case, both
algorithms iteratively removed the smallest islands. The Douglas algorithm, how-
ever, retained many of the narrow channels and spits (see in particular the narrow
channel in the upper right hand corner), while the WHIRLPOOL algorithm consis-
tently removed those with dimensions less than &

8.1 Comparison of resulls against manual generalizations

To evaluate the performance of the two generalization methods for large reductions
in scale, manually generalized 1:250,000 coastline data from NOS were used for
comparison. The 1:250,000 scale data, provided in digital form by NOs, were also
converted to ODYSSEY format and transformed from latitude/longitude to UTM
coordinates. The transformations for each test area used the same local offsets
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TABLE 4. THE NUMBER OF POINTS removed from the North Carolina data as the D and w tolerances were
increased from 10 to 200 meters.
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TABLE 5. THE NUMBER OF POINTS removed from the Maine data as the D-P and w tolerances were increased
from 10 to 200 meters.
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FIGURE 20. Maine coastline plotted at 1:125,000 scale: a. Douglas algorithm - 50 meter tolerance; b.

WHIRLPOOL algorithm — 50 meter tolerance.
Note: Figures 20 to 23 are published at a reduction of 50 %.
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FIGURE 21. Maine coastline plotted at 125,000 scale: a. Douglas algorithm — 100 meter tolerance; b.
WHIRLPOOL algorithm — 100 meter tolerance.

applied in the transformation of the corresponding detailed data files. Figures 24-26
show the manually generalized versions for each test area. These data sets provided
evidence of the level of detail and types of features a cartographer deemed important
for a 1:250,000 scale representation.

Performance of the comparison first required the generation of comparable
results from the detailed data. The most detailed portions (1:10,000 scale) of the
test sites exceeded the manually generalized test data sets by a factor of 25. The
average reduction over the various scales, was approximately a factor of 13; in
either case a sizeable scale reduction. This raised the question of what tolerance
should be applied to generate a 1:250,000 scale result. Using legibility criteria which
has a direct relationship to scale, a tolerance can be computed as the minimum
separation requirement between objects plus symbolized line width. If we assume
that lines will be drawn with a .2 mm pen and the minimum spacing between lines
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FIGURE 22. Maine coastline plotted at 125,000 scale: a. Douglas algorithm — 150 meter tolerance; b.
WHIRLPOOL algorithm - 150 meter tolerance.
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FIGURE 23. Maine coastline plotted at 125,000 scale: a. Douglas algorithm — 200 meter tolerance; b.
WHIRLPOOL algorithm — 200 meter tolerance.

must be .25 mm (based on the minimum dimension requirements from Robinson
et al 1984) then we can compute ¢ to be .45 mm or 112.5 meters on the ground
at 1:250,000 scale. Because there is no correspondence between a target scale and
the Douglas algorithm tolerance, an appropriate tolerance could not be estimated
for this algorithm. For comparative purposes, however, the 112.5 tolerance was
rounded to 112 meters and applied to each data set. Figures 27-29 show the results
for each test area. These were compared visually against the manually generalized
1:250,000 scale data, an approach supported by Visvalingam and Whyatt (1990).
Comparison of the 112 meter WHIRLPOOL generalizations against the 1:250,000 scale
versions first demonstrates that this tolerance did generate comparable results. The
112 meter WHIRLPOOL generalization of the North Carolina data, in particular, is
remarkably similar to the manually generalized version. Almost identical features
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FIGURE 27. Maine coastline plotted at 1:125,000 scale: a. Douglas algorithm — 75 meter tolerance; b.
WHIRLPOOL algorithm - 112.5 meter tolerance.
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FIGURE 28. North Carolina coastline plotted at 1:150,000 scale: a. Douglas algorithm - 160 meter
tolerance; b. WHIRLPOOL algorithm - 112.5 meter tolerance.

were removed by the WHIRLPOOL algorithm as were removed by the cartographer.
The Douglas algorithm, in contrast, retained almost all of the small estuaries as
sharp points and these features persisted even under the larger tolerances of 150
and 200 as shown in Figures 18 and 19. At the 200 meter tolerance the Douglas
algorithm result has approximately the same number of points as the manually
generated 1:250,000 scale version, so even using this criteria it is obvious that the
algorithm does not produce results comparable to the cartographer’s.

In the South Carolina test, the WHIRLPOOL algorithm was on the right track.
It merged many of the smaller islands into larger blocks of land which was the
approach taken by the cartographer. The Douglas algorithm also removed many
of the smaller islands but retained many of the small estuaries. The WHIRLPOOL
algorithm merged many of the small islands with larger islands so it mimicked the
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FIGURE 29. South Carolina coastline plotted at 1:50,000 scale: a. Douglas algorithm — 0 meter tolerance;
b. WHIRLPOOL algorithm ~ 112.5 meter tolerance.

topological changes made by the cartographer. The Douglas algorithm does not
exhibit this behavior and has the problem that a number of small islands overlap
each other.

For the Maine data, neither of the results succeeded entirely in retaining the
same information as retained by the cartographer. The same islands are retained
by both algorithms, but the cartographer enlarged and retained additional islands.
These were probably retained because they are important to navigation (solid rock
outcrops in what are generally navigable waters). The cartographer also widened
a number of peninsulas. The Douglas algorithm tended to reduce these to spiky
points and WHIRLPOOL algorithm eliminated a number of them. Also,the cartogra-
pher merged a number of islands with nearby peninsulas. The WHIRLPOOL algo-
rithm did merge islands with nearby land, but not always to the same mainland
points as used by the cartographer. The Douglas algorithm does not do this.

In all three test cases, the WHIRLPOOL algorithm can be seen to systematically
remove features which are too small to accommodate a 112 meter circle. In this
respect it satisfied the legibility requirement, but it cannot in all cases replicate the
manual results. The Douglas algorithm quite consistently retained features despite
the fact that many would be illegible if actually displayed at 1:250,000 scale. In the
North and South Carolina results, even the smallest channels were retained, which
is a result of the algorithm determining these features to be important within the
context of the line. The manual results document the removal of these features
and provide evidence that these features were not deemed important by the
cartographer for the 1:250,000 scale.

4. CONCLUSION

In terms of satisfying the original objectives of retaining essential or important
<haracteristics, the Douglas algorithm has been shown to be reasonably successful
for small tolerances or small scale reductions. For large scale reductions it is not
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effective. The definition of importance is limited to the context of the line which
is satisfactory for small scale reductions, but inappropriate for larger scale reduc-
tions which need to consider larger spatial neighborhoods. The significant impli-
cation is that this definition of importance is scale bound. The algorithm also does
not address the issue of legibility. The band, which is used as a basis for generaliza-
tion, does not simulate cartographic line width and does not assist in locating and
resolving line collisions. A third limitation lies in lack of a direct connection
between the algorithm tolerance and a target scale.

The epsilon band, in contrast, simulates the behavior of a cartographic line,
and the related concept of g-convexity provides a basis for discovering legibility
violations. It thus has the ability to target specific locations where generalization is
required. The WHIRLPOOL algorithm, as an implementation of this concept, has the
ability to generate discrete approximations of e-convex results and thus preserves
legibility. The other important factor is that the associated tolerance can be directly
related and computed from a desired symbol width and the minimum separation
between objects dictated by a target scale. The success of the algorithm in retaining
important or essential characteristics is also supported in general by comparison
with cartographers’ manual generalizations. The algorithm removes small features
which are frequently not considered important at small scales. In fact, the situations
in which it deviated from the cartographer’s results were typically cases in which
features were sub-tolerant but the cartographer had exaggerated them to retain
legibility rather than eliminating them.

The WHIRLPOOL algorithm, however, is not an ideal generalization processor.
Because it currently uses only simple geometric criteria, its results are not always
predictable. The important point is that the algorithm is able to identify areas
which require generalization. With additional intelligence built into the process,
it could become more sophisticated in resolving the conflicts instead of simply
eliminating the offending features.
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RESUME La théorie de la ligne cartographique (Peucker 1975) décrit la largeur comme étant la
caractéristique essentielle d’une ligne cartographique. Les représentations informatiques ont eu
tendance a ignorer cet attribut de base; dans le contexte de la généralisation, I'oubli est nuisible. La
théorie soutient qu’un ensemble de bandes délimitatrices représente le caractére cartographique de la
largeur et supporte la généralisation. L'algorithme de Douglas, toujours 'un des algorithmes les plus
communément employés pour généraliser les représentations numériques, utilise ce modéle. Les travaux
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du mathématicien polonais Perkal procurent les bases d'un autre modéle de largeur de ligne carto-
graphique ainsi que d'une technique de généralisation différente. Cet article examine 'efficacité des
deux modéles pour capturer la largeur d’une ligne cartographique et comment ils réussissent a produire
des résultats généralisés, particuliérement lors de la réduction d'échelles plus grandes. Les deux
techniques sont évaluées sur leur aptitude 3 satisfaire deux objectifs: capter les caractéristiques essen-
tielles et reconnaissables d’éléments géographiques et créer des représenttions qui peuvent étre affichées
lisiblement a des échelles plus petites. L'arcticle compare le comportement des deux méthodes lors de
leur application a des données numériques de rivage.

ZUSAMMENFASSUNG 'Die Theorie einer Kartographischen Linie’ (Peucker 1975) beziechnet die
Breite als wesentliches Merkmal einer kartographischen Linie. Digitale Darstellungen tendierten dahin,
dieses grundsitzliche Kennzeichen zu miBachten, und im Zusammenhang der Generalisierung ist dieses
Versehen abtraglich. Die Theorie behauptet, daf} ein Satz umschlieBender Bande den kartographischen
Charakter der Breite erfaB8t und die Generalisierung unterstiitzt. Der Douglas-Algorithmus, der immer
noch einer der gebrauchlichsten Algorithmen zur Generalisierung digitaler Darstellungen ist, verwendet
dieses Modell. Das Werk des polnischen Mathematikers Perkal liefert den Grundstock fiir ein anderes
Modell kartographischer Linienbreite und eine andere Generalisierungsmethode. Der vorliegende
Aufsatz untersucht, wie effektvoll beide Modelle die kartographische Linienbreite einfangen und
generalisierte Ergebnisse hervorbringen, besonders fiir groBlere Mallstabsreduzierungen. Beide Verfahren
werden hinsichtlich ihrer Fahigkeit eingestuft, zwet Zielvorgaben zu erfiillen: die wesentlichen und
erkennbaren Eigenschaften geographischer Kartenmerkmale zu erfassen und Darstellungen anzubieten,
die in kleineren Mafstiben leserlich gezeigt werden konnen. Der Aufsawz vergleicht das Verhalten der
beiden Verfahren im zuge ihrer Anwendung bei digitalen Kistenliniendaten.



