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Abstract— Visibility indices, matrices, graphs, and maps are defined for digital elevation terrain models and
their properties are established. Several potential applications of geometric terrain visibility in geographic
information systems are presented. Direct applications include the location of observation points and hiding
places, the determination of line-of-sight relay networks for microwave communications, scenic and hidden
surface paths, and aids to navigation. Indirect applications allow inferences about physiographic terrain
features: the mutual visibility among surface points yields considerable information about the landscape.
The preservation of the visibility model also provides a check on data reduction (compression) in digital
elevation models. Algorithms for computing terrain visibility on both triangulated irregular networks and
rectangular grids are reviewed and experimental results from several sources are reported. It is shown that
terrain visibility is invariant under certain projective transformations, and therefore relative eievations can

be reconstructed from visibility maps.

1. INTRODUCTION

Computational tools for visualizing terrain from dif-
ferent perspectives facilitate solving, by inspection,
many problems of a geographic nature. Using geo-
metric visibility, some of these problems can be solved
by direct computation instead of inspection. Examples
include locating observation towers and line-of-sight
transmitters and receivers; siting transmission lines,
pipelines, roads, and rest-stops; navigation and ori-
entation by reference to the horizon; the identification
of certain topographic features; and, of course, a host
of military emplacement problems. According to
Felleman and Griffin, who also reviewed early visibility
studies, “visibility mapping plays a central role in scenic
landscape assessment including the delineation of ju-
risdictional and management zones, quantification of
impacted viewer publics, and selection of visual control
and simulation positions™[39].

Digital elevation terrain models (DEMs) provide an
abstract representation (model) of the surface of the
earth by ignoring all aspects other than topography.
For instance, the elevation may be specified on a set
of grid points (with a stipulated method of interpola-
tion). Visualization tools, on the other hand, generate
a display under some simplified assumptions (models)
of surface reflectance, illumination, light transmission,
and viewing mechanism. For instance, a surface may
be visualized using a finite number of colors (that in-
dicate land cover), lambertian reflectance, point-source
illumination, and stereographic observation.

Because the visualization of terrain properties plays
such an important role in geographic information sys-
tems, we are compelled to study the relationship be-
tween terrain elevation and visualization. The resulting
abstraction, called geometric visibility, is based only
on the intersection with the terrain of the lines of sight
emanating from each viewpoint. Surface attributes,
vegetation, atmospheric diffraction, and light intensity
are neglected. While visualization shows the appear-

ance of the terrain to an observer, geometric visibility
is concerned only with the extent visible from given
observation points. The output of a visualization pro-
gram is intended for display for human assimilation,
but the output of a visibility program can be channeled
to another program for further calculation of visibility-
based attributes. .

The computation of terrain visibility is affected
by the choice of the underlying computer represen-
tation of the terrain. Only rectangular grids add
triangulated irregular networks (TINs) have been
used so far. The preferred Delaunay triangulation is
the dual of the Voronoi (or Thiessen) tessellation
of the projections of the data points on the horizontal
datum{ 14, 16, 45, 74].

Most elevation data, including that provided by the
United States Geological Survey, is distributed in a
uniform rectangular or quasx rectangular (geodesic)
grid format. Since four pomts cannot generally be fitted
by a plane, this leads to'a more complex, nonlinear
approximation of the terrain. The complexity of the
approximation depends on the degree of surface con-
tinuity desired. Tools are, however, available for re-
ducing grid data to a triangulated irregular network

which preserves certain terrain properties[55]. (We

became interested in geometric visibility precisely be-
cause the selection of surface-specific points for a TIN,
under a least-mean-square error criterion, often distorts
the appearance of the terrain[13, 15]. Recent algo-
rithms that take changes in the gradient or the gaussian
curvature into account fare much better[32-37].)
Although the display algorithms that form the core
of computer graphics are based on geometric visibility,
the application of geometric visibility to terrain models
is relatively new[l, 11}. In addition to computer
graphics, spatial data processing and topographic anal-
ysis, it bears on computational geometry, computer
vision, and operations research. The purpose of this
paper is to summarize the results to date, show several
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useful applications, and present some algorithms for
computing visibility.

2. BASIC VISIBILITY CONCEPTS

The visibility of the edges and vertices of planar
polygons has been extensively studied in computational
geometry both because of its intrinsic geometric interest
and because of its applicability to art gallery, prison
guard, robot motion, and tool-path planning prob-
lems[3, 4, 9, 48, 54, 61, 62, 67, 70, 80]. Most of the
two-dimensional results have so far resisted general-
ization to three dimensions: O’Rourke’s excellent 1987
monograph devotes only a few pages to 3D prob-
lems[68]. His recent survey on visibility graphs is also
restricted to 2D[69], as is Shermer’s update on art
gallery problems[84].

Terrain visibility is usually called a rwo-and-a-half
dimensional problem. For our purposes, a terrain is a
topographic surface whose elevation above a horizontal
datum is a single-valued function of x and y (no
overhangs). Two points on such a surface are said to
be mutually visible if the line segment that joins them
does not pass below the surface. The intervisibility of
a pair of points is a Boolean function of four scalar
variables, or a mapping from [R* X R*] 10 {0, 1}.

Given a terrain model on which surface-points, lines,
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and regions can be specified, the intervisibility of the
various types of entities is represented by the corre-
sponding Boolean visibility function defined on a
product space of the entities. Among the nine visibility
functions that can be defined among point, line, and
region entities, the most useful are the point-point and
point-region visibility functions.

Any visibility function can be represented by a vis-
ibility graph with arcs that link the nodes corresponding
to intervisible entities. The visibility graph for point-
point visibility is straightforward because any given
point is either visible or invisible from any other point.
However, edges and regions may be partially visible.

The point-point visibility among every pair of data
points can be represented by a Boolean array of size
N?, called the visibility matrix, or by the corresponding
visibility graph with N nodes and up to N? arcs, where
N is the tofal number of data points. The visibility
matrix is symmetric (under the assumption of zero
observation height). The row and column sums ( pro-
jections) of the visibility matrix correspond to the
number of data points visible from each data point of
the terrain. These visibility indices provide useful and
relatively compact information about the terrain. In a
bowl-shaped terrain, all points are intervisible; on a
dome, none are. The highest points don’t necessarily

Fig. 1. A visibility map. The figure shows the horizontal projection of a terrain on a Delaunay-triangulated
irregular network [ 52]. The dark areas are invisible from the viewpoint near the center, which is marked by
a small square.
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have the largest visibility indices[76]. The intervisi-
bility of two sets of points is represented by a Boolean
matrix with rows corresponding to one set, and col-
umns to the other, or by the equivalent graph.

Point-region visibility can be represented by a set of
two-dimensional visibility maps showing the vertical
projection on the horizontal datum of the visible and
invisible parts of the terrain from a specified viewpoint
(Fig. 1). A visibility map is required for each obser-
vation point. In cartographic terms, most viewshed
maps, from turn-of-century military conventions to
the present, are binary choropleths of visible and in-
visible zones. The earliest visibility maps were gener-
ated by the military using a defilade approach consisting
of radial samples of vertical cross-sections derived from
topographic contours. The intersection points of the
lines of sight were projected back to the original map,
and interpolated. Regions of visibility and invisibility
may be nested, as in the case of a mountain peak—
that itself contains an invisible crater—which is visible
beyond a ridge.

The projected boundaries of the regions may be di-
vided into blocking segments and shadow segments.
From the perspective of the viewpoint, a blocking seg-
ment represents the transition from a visible to an in-
visible region. A shadow segment represents the tran-
sition from invisible to visible. Blocking segments typ-
ically correspond to ridges and shoulder lines that cross
a line of sight (i.e., a ray contained in a radial vertical
plane through the viewpoint). Shadow segments cor-
respond to a double projection: the orthogonal projec-
tion on the horizontal datum of the central projection
(from the viewpoint) of a ridge onto the terrain on the
far side of the ridge.

The boundary of a connected region of visibility or
invisibility that does not contain the viewpoint must
consist of alternating chains of blocking segments and
shadow segments. Any single chain consisting only of
blocking segments or only of shadow segments must
be a single-valued radial function of the azimuth, and
may therefore form a closed curve only if it encloses
the viewpoint. Furthermore, along any ray from the
viewpoint on the visibility map, blocking and shadow
segments must strictly alternate. (But vertical edges
and surfaces tangent to a line of sight can give rise to
anomalous radial boundaries between visible and in-
visibie regions.)

If the terrain model consrsts of planar approxima-
tions. such as a TIN, then the projections on the hor-
izontal datum of both the visible and invisible regions
of an observation point consist of polygonal areas, and
each blocking or shadow chain is a piecewise linear
curve. Each blocking segment consists of edges of the
triangulation. An edge of the triangulation may be part.
of a shadow segment only if the plane that contains
the corresponding terrain edge and the viewpoint also
contains a more proximal terrain edge. The maximum
number of regions visible and invisible from a single
viewpoint is quadratic in the number of faces[11].

The horizon is the set of ridges that corresponds to
the blocking segments most distal from the viewpoint.
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Fig. 2. Horizons in [ '/%-D. The viewpoint has three odd right
horizons (blocking edges) and three even right horizons
(shadow edges) including the terrain boundary. Its only left
horizon is the terrain boundary. Terrain segments between
odd and even horizons are invisible from the viewpoint, and
segments between even and odd horizons are visible.
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It has been shown that the number of segments com-
prising the horizon is, in the worst case, only slightly
superlinear in the number of terrain edges[83, 11,
28, 29]. The boundaries between visible and invisible
regions are sometimes called odd and even order /o-
rizons with respect to the given observation point (Fig.
2). A simple data structure for efficient manipulation
of these boundaries, called the inﬂuence tree, is pre-
sented in [22].

In order to program yxsrbllrty computauons two
questions must be laid to rest. The first question is:
What happens beyond the boundary of the terrain,
where we have no elevation information? We can as-
sume, for instance, that the terrain is bounded by an
infinitely high wall, or that it is surrounded by a flat
ocean. Alternatively, we can model the curvature of
the earth, which will ensure that visibility from every
point is limited, or else simply set an arbitrary limit
on the maximum distance from which a point may be
visible, .o L

The second quesnon concerns collmear points. Are
surfaces tangent to a line of sight visible? How we settle
these questions won’t have any significant impact on
the methods or conclusions that we present, but com-
puter implementation requires unambiguous specifi-
cations.

A further assumption may be made with regard to
the height of the observer above ground. In most in-
stances, assuming ground-level observation is not re-
alistic. Assuming some observation height is essential
for some problems, but optional for others. We defer
discussion of algonthms for computing visibility ma-
trices and vnsrblhty maps m order to consider some
useful applications. ’ '

3. OBSERVATION POINTS
Sharir’s shortest watchtower algorithm determines
the location of the point with the lowest elevation above
the surface from which an entire polyhedral terrain is
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Fig. 3. Location of fire towers. Points g, b, and ¢ are candidate locations. The regions visible from each point

are shown below the terrain, followed by the ten elementary regions (generated by pairwise intersections)

that are each completely visible or completely invisible from all candidate points Visible elementary regions

are marked with an x in the table on the right. In this simple example, it lS clear that pomts a and care
sufficient to see the entire terrain.

visible[83]. Such a point must exist because the terrain
elevation is a single-valued function, and therefore en-
tirely visible from any point sufficiently far above it.
The computational complexity is O(#n log? n), where
n is the number of polyhedral faces, so the algorithm
is computationally practicable. It is also possible to
preprocess the terrain to determine efficiently whether
any particular point is visible from a single observation
point on or above the surface[11].

Finding the location of the minimum set of obser-
vation points on the surface from which the entire sur-
face is visible (guard allocation) is much more time
consuming. Even for 2D-polygons, the minimum ver-
tex guard problem is of exponential complexity [68].
Topographic applications include the location of fire
towers, artillery observers, and radar sites.

For finding the minimum set of observation points
on a triangulated terrain, it is customary to restrict
consideration to viewpoints located at vertices of the
triangulation. First, the area of interest must be par-
titioned so that each partition is either completely vis-
ible or completely invisible from each viewpoint (Fig.

3). The required partitions are obtained by successive

intersections of the visibility maps. Now finding the
smallest number of observation towers can be stated
as a set-covering (or facilities-location) problem of op-
erations research, which is of exponential complex-
ity[ 11, 49].

Tserkezou solves a small fire-tower problem, using
matrix-reduction heuristics similar to those of the
Quine-McCluskey algorithm for Boolean minimiza-
tion[91]. The two steps of the iterative reduction pro-
cess are:

1. Eliminate any viewpoint (column ) that sees only a
subset of the partitions seen by some other view-
point,

2. Eliminate any partition (row) that is seen by a su-
perset of the viewpoints that also see some other
partition,

Once no further rows or columns can be eliminated
from the partition-viewpoint matrix, all remaining

combinations of viewpoints must be tested to deter-
mine the minimal set. If the residual set after reduction
is too large for the available computing resources, then
a sub-optimal solution with some redundant towers
must be accepted.

Instead of using the matrix-reduction algorithm, Lee
compares three different heuristic methods for finding
the minimum number of observation towers on a 200-
point TIN. The algorithms find almost the same num-
ber of towers (25, 25, and 27), but the computing times
between the best and worst differ by a factor of 5000
to 1{56]. Variations of the problem considered in the
same study include:

a. Find the area visible from a fixed set of observation
points.

b. Maximize the area v1snble from a fixed set of ob-
servation points.

c. Given some cost function related to tower height,
locate the towers so as to see the entire area at min-
imum cost.

d. Given some cost function related to tower height,
locate the towers that maximize the area visible at
a ﬁxed cost.

Landscape analysns is less easy to formahze but
modern scenery analysis distinguishes between supe-
rior, normal, and inferior positions relative to local
relief[ 12, 38, 58, 92]. Depending on the application,
a commanding vista may be called a military crest, or
a panorama.

4. LINE-OF-SIGHT COMMUNICATION

An obvious application of geometric visibility is the
location of microwave transceivers for telephone, FM
radio, television, and digital data networks. Of course,
a realistic solution must take into account the height
of the towers, the diffraction from intermediate ridges,
and the distance limit imposed by the inverse-square
law of electromagnetic propagation. So far, only the
tower-height has been considered.

If the towers are restricted to the vertices of a poly-
gonal terrain, then the only information that is required
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for line-of-sight computations is the visibility matrix
or graph. The location of the viewpoints is immaterial,
since a line-of-sight link may well start in the direction
opposite to that of the terminus. ( This happens when,
for instance, a viewpoint located on the side of the
transmitter away from the receiver can see both the
starting point and the terminus.)

Finding the minimum number of relay towers nec-
essary for line-of-sight transmission between two
transcetvers can be formulated as a shortest-path
search[25] on the visibility graph. The overall com-
putation can be accelerated by computing dynamically
only the portions of the visibility graph that are required
at any stage of the shortest-path search[8].

Now consider the problem of locating relay towers
to complete the line-of-sight network between several
transceivers. This problem is solved, under the restric-
tion that the relay towers are located at vertices of the
TIN, in [21]. Here, instead of computing the shortest

path, one must find the Minimum Steiner Tree on the

visibility graph. The Steiner problem is of exponential
complexity in terms of its input, but efficient heuristics
have been developed[53]. Because the overall com-
putational complexity is the product of the cost of
computing the visibility graph on the TIN and of the
cost of computing the Minimum Steiner Tree on the
visibility graph, the size of the underiying triangulation
must be reduced as much as possible. Then, a conser-
vative solution is obtained by adding the known bound
on the resulting elevation error to the heights of the
relay towers.

Finally, suppose that identical transmitters are to be
located so as to broadcast to a fixed set of receivers.
Specifically, it is required to locate the minimum
number of transmitters so that each receiver can “see”
at least one transmitter. This problem is similar to the
fire-tower problem, and can be reduced to set covering
on the visibility matrix itself (without intersecting any
visibility maps).

§. SURFACE PATHS

The shortest path from one viewpoint to another
along the edges of a triangulated terrain, such that none
of the viewpoints traversed is visible from a given ob-
servation point, is called a smuggler’s path, while a
path on which every vertex is visible is a scenic path.
We can find such a path (if one exists) by determining
either the viewpoints that are visible from the obser-
vation point, or those that are not, and applying a
standard shortest-path algorithm to the edges that con-
nect them[81]. (For planar graphs, Dijkstra’s algorithm
is worst-case optimal[25], but since the location of
the viewpoints provides a lower-bound on the length
of the path to the terminus, the A* algorithm may
sometimes be faster.)

We may restrict the location of the path to a rarget
region and, instead of a single observation point, specify
a set of observation points. Now, instead of computing
the visibility from all the observation points ahead of
time, we determine dynamically the visibility of can-
didate points along the path as they are expanded. The
problem is completely specified by two N X N matrices:
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the adjacency matrix of the terrain vertices, and their
visibility matrix. We may also seek a scenic path such
that each vertex on it is visible from some (or all) of
the specified observation points, or a path that has the
maximum cumulative visibility[24].

Iwamura and his colleagues demonstrate a geo-
graphic database system for interactive planning of
scenic paths. Constraints on the path include length,
slope. and cost of construction. For any observation
point along a candidate path, both a “visual range map”
(the representation of a viewshed using radial lines from
the viewpoint) and a bird’s eye view of the terrain can
be displayed [ 50].

6. PHYSIOGRAPHIC FEATURES

The literature on landforms is remarkably short on
algorithmic definitions[ 10, 72, 75, 93]. Most attempts
to automate physiographic feature extraction have been
based on discrete approximations to derivatives of the
surface([32-37, 46, 51, 63, 71, 73]. These features are
generally quite local and highly scale-sensitive, whereas
the significance of terrain features depends on their
size and location relative to similar features in the entire
area[58]. Metrics based on geometric visibility auto-
matically take into account global relations. Human
observers find it easy to classify significant features on
the basis of visibility, though it is surprisingly difficult
to trace the significant ridges on a contour map.

Some examples of visibility concepts applied to to-
pographic features are the following. The visibility re-
gion of significant peaks tends to be large, and includes
most of the visibility regions of lesser peaks. Significant
peaks also have many blocking segments and multiply-
connected visible regions, which distinguishes them
from points in broad valleys that also have high visi-
bility. Ridges block the horizons of many observation
points. Points that are intervisible are in the same val-
ley; otherwise, they are separated by ridges. In pits and
valleys, the prospect is singly connected, and tends to
change gradually. Lee presents a statistical analysis of
elevation, visibility dominance, and landform category
on a raster DEM that shows significant visibility dif-
ferences among peaks, pits, ridges, and channels[57].
Even if landforms cannot be determined entirely ac-
cording to visibility criteria, these may generate useful
measures for ranking them.

Small-scale experiments on finding ridges, peaks, and
pits using visibility criteria were first described in [ 65,
81]. Similar visibility-based methods have also been
applied to the analysis of gray-scale images, where im-
age intensity is considered the equivalent of eleva-
tion[19, 20]. The correlation between visibility and
topography is explored from a military perspective by
Ray[77]. ’

7. NAVIGATION
Horizons do provide an important clue for navi-
gation in mountainous terrain. Discontinuities in vis-
ibility can be readily determined under poor conditions
by a variety of sensors, and matched to stored or com-
puted horizons to determine the location of the ob-
server. Discernible terrain features guide airborne mil-
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itary vehicles[89]. The use of horizon lines for auton-
omous navigation by a Mars Rover has been
considered[64], but much further work remains to be
done.

8. ALGORITHMS FOR VISIBILITY DETERMINATION

In principle, one could use any object-space hidden-
surface algorithm from computer graphics[2, 59, 85,
94] to determine terrain visibility. (Object-space al-
gorithms, in contradistinction to image-space algo-
rithms like the popular Z-buffer method, determine
the visible portions of the object rather than its pro-
jection on a display screen. Ray tracing exploits the
finite resolution of the display. For visibility maps, we
need the projection of the visible areas on the horizontal
datum rather than on a view plane.) Most general-
purpose hidden surface algorithms are inefficient for
terrain visibility because they do not take advantage
of the fact that there are no bortom surfaces. An efficient
output-sensitive hidden-surface algorithm and its par-
allelization are reported by Reif and Sen{79], but im-
plementation remains problematical. Recently, algo-
rithms intended specifically for geographical terrains
have been reported for computing visibility maps and
visibility matrices (or graphs) on TINs, and for com-
puting visibility matrices on grids.

The computation of the visibility matrix on a trian-
gulated irregular network is conceptually straightfor-
ward, unless one attempts to exploit the obvious co-
herence in the visibility of neighboring viewpoints. Lee’s
algorithm is designed for “binary visibility” determi-
nation: a triangular facet is considered “visible” from
a viewpoint if all three of its edges are completely vis-
ible[ 56]. Otherwise, the facet is considered “invisible.”
The edges are first sorted according to their minimum
distance from the viewpoint, then compared pairwise
to determine whether the proximal edge blocks the
distal edge. The azimuths of the end-points of the edges
are used to screen out pairs that cannot block one an-
other. Lee also computes how much the viewpoint
could be raised or lowered with the entire triangle still
visible, and makes use of this information in solving

the variable-height tower problems described earlier. -

Our earlier algorithm for computing the complete
visibility map on a TIN is conceptually quite simi-
lar[ 18, 52]. It can be visualized as a searchlight, located
at the viewpoint, which illuminates the terrain in a
progressive outward spiral. As the beam is raised, it
encounters ridges that cast shadows on the terrain
farther from the light. The endpoints of the ridge and
shadow segments, which form the boundary between
the visible and invisible regions, are recorded. Adjacent
viewpoints ( vertices of the triangulation ) are considered
intervisible. '

In terms of triangulated terrain representation, the
triangies must be examined in a sequence such that a
triangle which may cast a shadow on another triangle
is processed first. The necessary ordering property,
called acvclicity, has been shown to hold for Delaunay
triangulation[17, 30]. The visible portion of each tri-
angle is determined by projecting on it the dominant

blocking edges between the triangle and the viewpoint.
New blocking edges are introduced whenever a partially
or fully visible triangle is followed by an invisible tri-
angle. The current horizon of dominant blocking edges
is maintained in a data structure to avoid checking for
each triangle all of the previous blocking edges.
Empirical observations show that the average per-
formance of the program, for a single viewpoint, is
linear in the number of vertices, because the visibility
of each triangle is computed in constant time regardless

_ of the size of the input. The computation of the N

visibility maps for a.terrain with N vertices is thus of
O(NH)[52].

More complex algorithms for triangulated terrain
models are surveyed by De Floriani and Magillo from
a computational-geometry perspective[23]. Many of
these algorithms are based on computing the upper
envelope of the visible ridges, which can.be computed
efficiently using divide-and-conquer and sweep-line
techniques. Data structures for building the envelope
include the forizon tree and the conflict graph. A ran-
domized algorithm is also presented.

Grid-based algorithms all compute the intersection
of_radial lines of sight with the edges of the grid cells
that they intersect. The elevation of each edge is as-
sumed to vary linearly between that of its endpoints.
This may, however, lead to inconsistencies because the
elevation within the grid cell is not modeled. The dif-
ference between algorithms lies mainly in the choice
of rays (Fig. 4).

Shapira computes a distinct ray to every grid point
and abandons the ray as soon as a blocking ridge is
found{81]. His algorithm, which is a modification of
Anderson’s hidden-surface method for viewpoint-
viewpoint and directional visibility, was coded with
care using only integer arithmetic[82]. It has been run
on terrains with up to 14,000 vertices (but the output,
a 14,800 X 14,000 visibility matrix, could not be
saved). The average complexity of the algorithm is
0( N2.25) N

Rather than compute rays to every grid point, it is
more economical to compute rays only to vertices of
the grid that lie on the Boundary of the region under

Fig. 4. Visibility calculations on a grid. This figure shows the

redundancy of computing visibility by following the line of

sight from each observation point to each target point. Most

grid-based visibility programs eliminate computing some of

the redundant intersections of the lines of sight with the edges
of the grid cells.
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consideration[7, 78]. The elevation angle of each ray
is progressively raised to clear intersecting blocking
edges, and edges below the ray are marked “invisible.”
The visibility of each grid point inside the region is
computed from that of its incident edges. Ray compares
the accuracy of using rays to every grid point to that
obtained by using only rays to selected boundary
points{78]. He shows that the differences are minimal.
Furthermore, there is little additional loss of accuracy
from reducing the number of rays even more provided
that the points are weighted to account for the disper-
sion of the rays. Using only 32 rays from each obser-
vation point on a 100-m resolution grid is almost as
good as using 128 rays when visibility is limited to 40
km (with observer and target heights of 5 m and 25
m, respectively ). However, Ray is interested primarily
in selecting high-visibility sites, and therefore computes
only the visibility index for selected observation points
rather than the complete visibility matrix.

9. PARALLEL COMPUTATION

Because visibility computations are so computer-
intensive, they form a natural target for paralleliza-
tion. Elegant algorithms are being developed for 2D,
21/2.D, and 3D visibility [ 6, 7, 60, 87]. Whether these
will prove to be of practical significance remains to be
seen, since visibility computations can also be readily
and efficiently parallelized by either terrain segment
or by viewpoint. Furthermore, for a single viewpoint
the average complexity tends to be linear in both input
and output, so little gain can be expected from clever
algorithms. The most massive computations to date,
coarsely paralleiized on networked Sparcstations, were
reported by Ray on a 28-million point data set on the
Korean peninsula[78].

Nevertheless, in computing the visibility matrix, it
is possible to take advantage of the coherence of the
visibility from adjacent view points, because rays from
adjacent observation points to a given target point tend
to traverse the same set of edges. This property has
been carefully defined and exploited for both visibility
index and visibility matrix computations[86]. The al-
gorithms are parallelized for a CM-2 hypercube com-
puter by assigning several processors to each ray. The
visible segments of each ray from a given viewpoint to
a target point are derived from the properties of rays
from adjacent viewpoints, using a sweep algorithm.
For 64 X 64 point source and target regions (which
may overlap), a 16K-processor hypercube computes
the visibility maps in about 30 seconds. Almost half
of the total time is input/output.

The above algorithm requires some global com-
munication among processors, which may be unac-
ceptable for mesh-connected computers. An algorithm
specifically designed for mesh-connected computers is
based on the propagation of shadows in a manner sim-
ilar to that of the TIN-oriented methods above, but it
assumes a constant elevation within each cell{88]. On
a grid, however, the direction of propagation is re-
stricted by the cell connectivity and cannot follow ex-
actly the line of sight. This introduces errors unless
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one keeps track of the partial visibility of each grid cell.
The ray-sweep method and the propagation method
were compared on three real scenes and two artificial
scenes with respect to both accuracy and timing, but
both methods were implemented only on the hyper-
cube[88].

. 10. ACCURACY

All visibility calculatlons are very sensitive to changes
in elevation near the viewpoint because the line-of-
sight to distant targets magnifies these changes in pro-
portion to the distance. Because of the dominant effect
of errors near the observation point, Felleman and
Griffin advocate a two-tiered model where the topog-
raphy near the observation point is known five or ten
times more accurately than in the rest of the
viewshed[39].

The influence of possible elevation errors and of nu-
merical errors generated in the computations is ex-
amined in[39, 40-44, 60, 88]. Mills, Fox, and Heins-
bach compute in 30 minutes the complete intervisi-
bility of the 86 X 76 data-point DEM (Howe Hill in
Massachusetts) on a Connection Machine-2. Ran-
domly distributed errors are then added to the elevation
values, and the calculations are repeated. The results
indicate that “intervisibility may be overestimated
when the effect of DEM errors is not considered” [60].
Similar conclusions are stated in[76].

Fisher simulates correlated DEM errors in viewshed
determination. He shows that-the spatial correlation
reduces uncertainty in comparison to independent er-
rors, and conjectures that the areas visible from higher
elevations are less susceptible to such errors than those
visible from a depression. His work suggests that errors
induce an underestimate of the visible area. (Consider
a flat, completely visible area. Any variation in ele-
vation due to error will decrease the computed visi-
bility.) Because of the disproportionate effect of small
errors, Fisher advocates using a probabilistic formu-
lation to take into account uncertainties in elevation.
He attempts to formulate a quantitative notion of fuz-
ziness as the lack of clarity due to observatlon condi-
tions{40-44]. -

A conservative strategy is to compute ternary visi-
bility maps which show the area that is certainly visible,
the area that is certainly invisible, and the region of
uncertainty. Quoting Felleman and Griffin{39] again:

The Monte Carlo analyses showed that expected variations
in-the DEM have potentially major effects on the resultant
viewshed. Rather than the conventional paradigm of a single
crisp black and white (visible or not visible) deterministic
pattern, viewshed maps intrinsically contain an extensive, .
mottled, rich ‘gray’ set of ‘potentially visible or hidden’ zones.
GIS analyses which ignore the magnitude and character of
this information are necessarily suspect.

11. VISIBILITY INVARIANTS
Visibility functions do not define a terrain uniquely:
several different terrains may have the same visibility
map. We call these terrains visibility-equivalent. To
gain some insight into what characterizes this equiv-
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alence relation, consider the two 1'/2.D visibility-
equivalent terrains shown in Fig. 5. For simplicity, the
x-coordinates of the points are uniformly spaced. Un-
der these conditions, the y-coordinates are subject to
the following equation:

(Va=y1)/ (Ya=y3) = (ys=12)/ (y3~V2).

This equation defines the cross-ratio of four segments,
which is invariant under a projective transformation.
Once we fix one of the elevations arbitrarily, any one
of the others can be calculated from the three remaining
elevations by solving a linear equation.

As a corollary, the visibility functions on a 1'/2-D
terrain are invariant under any projective transfor-
mation, including translation and scaling of coordi-
nates, rotations, and affine transformations. We there-
fore believe that the visibility map preserves an im-
portant property of the terrain that is related to shape,
and may therefore be used as a criterion function for
lossy compression algorithms. (Note, however, that the
converse is not true: not all visibility-equivalent terrains
can be derived by a projective transformation.)

The projective relationship can be extended to
212D triangulated terrains. It yields a set of linear
equalities and inequalities that have been used to com-
pute the visibility-equivalent terrains of a set of visibility
maps using linear programming software[66]. The in-
equalities arise because the elevation of any point which
is invisible except to its neighbors is only bounded,
rather than determined exactly, by the elevations of
other points (Fig. 6). For instance, every convex (con-
cave) bowl has the same visibility map. The terrain

y

X1 X2 X3 X4 Xs'

Fig. 5. Two visibility-equivalent terrains in 1'/2%-D. The lo-
cations of shadow edges are identical for every terrain whose
elevations satisfy the projective relationship (y, — y4)/ (Ve —
¥3) = (ys — ¥2)/(¥3 — »,) for each subset of five data points.
For example, the shadow edge Q of the observation point P
has the same x-coordinate in both terrains. Consequently, the
intervisibility of any pair of points can be readily determined
from the locations of the horizons.

G. NAGY

Fig. 6. Constraints for 2'/%-D terrain reconstruction. The
viewpoint on this horizontal projection is vertex O. The ray
OQ defines a line of sight with azimuth 8 through the horizontal
projection of point K, which is a vertex of the triangulation.
The elevation of this line of sight is defined by its intersection
with point M on ridge BG. The horizontal projection of BG
is the first horizon of O, and DF, its induced shadow edge, is
the second horizon (in direction ). The visibility constraints
associated with this ray are: (1) the elevations of points J, L,
Q, and N (on edge CG) are below that of the line of sight;
(2) points M and P are on the line of sight, and (3) point Q
lies above the line of sight. Such constrains define a redundant
set of inequalities and equalities that yield feasible values for
the elevations of all the vertices. A vertical radial cross-section
through OQ that satisfies the constraints is shown below the
" plan view.

reconstruction is computationally intensive: a terrain
derived from a 9 X 9 rectangular grid converted info
128 triangular facets required the simultaneous solu-
tion of over 9000 equalities and inequalities.

To avoid the solution corresponding to a completely
flat terrain that trivially satisfies all equalities and in-
equalities, a small constant threshold must be intro-
duced in each inequality. The threshold specifies how
much (at least) an invisible datapoint must be below
the line of sight, or a visible datapoint above it. (This
threshold plays a role similar to that of slack variables.)
As a check on the reconstruction, the visibility matrices
of the terrains were computed and compared to those
of the terrain from which the visibility map was orig-
inally generated. Numerical inaccuracies sometimes
cause minor differences between the matrices of the
original and reconstructed terrains. The discrepancies
decrease and eventually disappear as the threshold is
increased, but if the threshold is too large, then the
linear system does not have any solution.

The visibility matrix gives even less information than
the visibility map about topography. We do not yet
understand, even in 1'/2-D, under what conditions does
a given visibility matrix correspond to a realizable ter-
rain.

12. CONCLUSION.

Efficient algorithms have been developed for com-
puting geometric terrain visibility on both triangulated
networks and regular grids. The visibility map of several
hundred potential observation sites can be computed
for a terrain defined by millions of elevation data points



Terrain visibility

in a few hours on any contemporary workstation. Al-
though parallel algorithms have been applied to ad-
vantage, viewpoint-to-viewpoint coherence has been
exploited only at the grid-level rather than the terrain
level. The visibility indices, matrices, graphs, and maps
that such computations yield are useful for visualizing
visibility-related terrain properties and also form the
basis for several applications where direct computation
is substituted for inspection. The major driving force
has been geographic information systems for military
applications.

Efficient solutions to the single observation tower
problem have been published. The problem of locating
the minimum number of viewpoints from which the
entire terrain is visible can be solved by a set-covering
algorithm. Some shortest surface-path problems con-
strained by visibility criteria and line-of-sight path
problems for microwave communications are com-
putationally tractable, and programs have been tested
on small examples. Visibility methods are beginning
to be applied to the identification and ranking of phy-
siographic features such as ridges, but the experiments
reported are difficult to evaluate in the absence of con-
crete criteria for descriptive topography. The applica-
tion of visibility methods for navigation for civilian
purposes has barely been initiated.

On polyhedral terrains, the visibility map is sufficient
to define the terrain to within a projective invariant.
However, the only method demonstrated so far for the
reconstruction of visibility-equivalent terrains is far too
costly for large-scale application. If a computationally
less intensive method is found, it may have applications
to terrain data compression by retaining only terrain
features that have a significant impact on visibility.

Tools for computing the intervisibility of selected
points have long been included in geographic infor-
mation systems[5, 26, 27, 31, 47, 90], but a recent
attempt by Felleman and Griffin{39] to compare eight
software packages for viewshed determination led to
inconsistent results. We expect, however, that the next
generation of GIS will offer a number of robust visi-
bility-related application programs.
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