The evolution of a continuous projection for portraying the
area of territorial units in proportion to a thematic variable
has, in the past, eluded the cartographer. The present paper—
resulting from posigraduate research in cartography by the
second author under the supervision of the first—describes the
development of such a projection and some of the possible
applications.
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A mathematical model is a conceptual abstraction, repre-
senting a generally complex situation in a quantitatively
simplified way which may often be regarded as a stream-
lining of the actual data. Such a model may be quite
generalised, and it can be modified chiefly in two ways.
Either the general or overall parameters of the representation
formulae can be changed, resulting in an improved version.
Alternatively, ‘local’ modifications can be introduced. The
representation of the earth with the aid of a cartographic
projection is such a model. The actual shape of the earth
with its mountains and valleys is, of course, quite irregular.
As a first approximation the sphere with its single para-
meter—the radius—is generally used, and this serves as
the basis for the computation of many ‘geographical’ map
projections. Geodetic projections used for the production
of large-scale topographic maps require a higher grade of
precision in representing the earth’s shape, and an ellipsoid
of revolution therefore serves as a second approximation.
Here the original spherical model is modified by intro-
ducmg a second parameter and utilising the major and
minor semi-axes for the definition of the spheroidal surface,
still adhering to a regular mathematical shape. However,
many large-scale geodetic applications require an even
greater degree of adhererice to the actual shape of the earth,
and for the determination of altitudes a third approxi-
mation is used, namely the geoid. This equipotential surface
can be regarded as having local deformations—albeit not
necessarily mathematically defined ones—superimposed on
a theoretical regular surface.

All cartographic projections used in mapping—both
those of a precise geodetic nature in which a knowledge of
deformations is of importance, as well as the more general
or global projections—regard the earth as a regular surface.
Deformations here vary as a function of the distance from
given points or lines. We thus arrive at more or less regular
patterns of deformations. One method of producing a
projection with a better ‘cling’ to the sphere or the ellipsoid
is arrived at by dividing the projection surface into regular
strips, along standard lines, as is the case in the transverse
cylindrical representation based on the Gauss~Kriiger or
the Transverse Mercator projection (e.g. the 60 zones of
the Universal Transverse Mercator projection and UTM

36

topographic grid system). Another is the modification of such
projections as the Sanson-Flamsteed Sinusoidal by
centering various portions on different half meridians,
resulting in large gaps which are usually located in the
oceans where the great, and sometimes infinite, distortions
do the least damage, so to speak. As is true of all projections,
their application must thus be judged not by ‘absolute’
merit but in conjunction with both the actual region
covered and, chiefly, the purpose of the map.

RADIALLY-CHANGING SCALE PROJECTIONS

The modified plane projections cited above have one aim in
common: to locally enhance certain properties such as
conformality in an equivalent projection (e.g. interrupted
Sinusoidal), or linear scale and area equivalence in a con-
formal projection (e.g. UTM). However, in the past a need
has been felt for a cartographic representation which stresses,
and even markedly exaggerates, some property such as
linear scale or area around a given point or a number of
points. The classic example is the suggestion for a
logarithmic-scale map' showing emigration from Sweden
generally attributed to Hégerstrand.? The parabolic-scale
town maps by Falk are another, devised with the aim of
showing the town centre at a larger scale than the periphery
while retaining continuity (in contrast to the interrupted
examples mentioned above). These parabolic maps and
their projections are, however, produced by mechanical
means. A projection for producing town and road maps
with scale changing radially at a hyperbolical rate from a
central point to the periphery has been proposed by
Kadmon.® ¢ This not only enables production of the map on
an automated plotter with a program named HYPER-
BOMAP, but it makes it easy to change the projection
centre as well as central scale and radial scale change, thus
resulting in a family of hyperbolical-scale projections.

The above-mentioned projections can be regarded as
stretching the map, fish-eye fashion, around a single point.
It should indeed be stressed that in all cases a single
central point or focus is used. Haggett even went so far as
stating,® ‘Constructing the same kind of map for two
centres is possible only if we are prepared to drop the true-
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direction constraint. For three or more centres, no two-
dimensional mapping is possible.’

POLYFOCAL CARTOGRAPHY

We shall now present a map projection which deforms the
surface locally not at one point but at an arbitrary number
of points. We must start with some observations on the
possible application of such a map. In speaking of “straight-
lined’ computer maps Kadmon suggested® that these can
be used in the field of thematic mapping but not as topo-
graphic maps, much as a photographic image of the human
bodyis required in an anatomical atias, whereas a streamlined
version is often found in art. The same is true of locally
deformed (or rather locally deforming) projections. They
can be utilised in portraying subjects in which not the
‘true’ or orthogonal outlines are of importance, but a locally
deformed or induced modification in which scale at any
point is proportional to some quantitative variable. Analog
(i.e. physical) models of such projections produced by
magnetic forces as well as by surface tension are shown by
Morgan in Chorley and Haggert.?

The proper method for developing such a projection
would be to ‘graft’ the local modification directly onto the
spheroid and thence projecting the new surface into the
plane with the aid of suitable transformation formulae.
However, the authors, one of whom is a cartographer and
the other a geodesist, were too lazy (let truth be said) to
take the long and theoretically precise way. Instead, they
set out from a given plane representation of the earth, f.e.
from a map, by digitising it with all its inherent limitations
and deformations, arriving at the final product by subjecting
this base map to the transformations developed below. For
these, the name Polyfocal Projection is suggested, con-
forming to naming by ‘special property’—attribute (c) as
listed by Maling.® The authors admit a priori the short-
comings of this method from a theoretical viewpoint and
thus fend off any criticism raised by purists enquiring after
a precise definition of the deformations incurred in this
projection. However, if we know the properties of the
original base map projection, such as the Tissot indicatrix
distribution, the polyfocal projection can be superimposed
on these and we would arrive at a reasonably ‘true’ modi-

fication of the spheroid. In practice an existing world map
was used, as digitised by Mr G. B. Lewis, to whom our
thanks are due, based on the van der Grinten projection.
This file of points was then subjected to the transformations
of the polyfocal projection.

The development of a new projection—and the authors
hope that the work outlined in this article merits this
classification (see Maling’s note on ‘Personal Projections’®)—
may be interesting and rewarding in itself, whether there
is or is not an actual need for it. But most projections
evolve, after all, with a practical application in mind. We
shall, therefore, briefly review some fields in which the
polyfocal projection might be utilised. Others might be
devised, and if they are of any practical use, cartographers
will find their own purpose for trying them out.

The first use would conceivably be in the economic field.
One often finds map series showing different territorial
units (e.g. countries) with area proportional to some
statistical variable, such as fuel oil production or con-
sumption. These are generally made by redrawing each
country separately at the proper thematic scale, and then
fitting the countries together as well as practicable. This

not only introduces deformations, but requires the succes-
sive repositioning of the countries in a mostly discontinuous
array. Hand-drawn or one-off discontinuous maps with
locally changing scale can be found in a wide range of
publications, from serious atlases'® through textbooksi!
and professional journals!* to popular periodicals.® This
manual redrawing is a tedious job, and might be replaced
by using the polyfocal projection; the result will be a suit-
ably deformed burt continuous representation of the statis-
tical surface. Another application might be in the domain
of road and communication maps. In Kadmon (1974) it was
suggested that the hyperbolic-scale town maps described
could be used for portraying travel zime on a linear scale.
These maps were based on a single centre on the assumption
that traffic density and average speed change radially from
this point. However, in order to better approximate real con-
ditions it would be necessary to re-centre these projections
at a number of foci simultaneously. The present projection
was, in fact, developed with this problem in mind. Another
application could be in the field of mapping potentials,
since the definition of potential at a point as the minus
first moment of the population about this point (see e.g.1%)
somewhat resembles the basic expression used in developing
the polyfocal projection.

In mapping a statistical surface, continuous or with dis-
continuities such as choropleths, one generally super-
imposes a scale of tones or tints over the geometricaily
‘true’ representation of the territorial units in order to
express thematic value or intensity. It is then difficult to
graft further continuous variables onto this image. If,
instead of ‘flattening’ the statistical surface orthogonally
into the map plane, we express the shapes in a form which
is proportional in size to the thematic variable, we can add
another thematic dimension with the aid of colour, thus
enabling in a single map the comparison of two different
area variables such as production (size of area) and con-
sumption (colour).

Various geographers have tried in the past to devise a
cartographic projection which would fulfil the needs for a
continuous representation of non-Euclidean or non-metric
spaces, i.e. of spaces in which distance or area are propor-
tional to non-geometric variables such as cost, time, density
etc. Tobler reproduces the Armadillo ‘projection’ presen-
ted (drawn by freehand) by Woytinsky (see Tobler, 1963,
p. 62). Bunge!® extensively treats such spaces. Butapparently
no one has, as yet, arrived at a real projection of this type.

One of the more challenging applications of the polyfocal
projection is now being tested. Cristaller, in his Theory of
Central Places,® covers thematic space with a net of hexa-
gons of equal thematic content but different geometrical
area. Bunge!® (p. 278) tried to convert this into a space
composed of hexagons of uniform density, 7.e. of equal
area, but succeeds in doing this only approximately and
subjectively by freehand. The polyfocal projection now
can do this objectively by a method of iterations. Figure 5
shows Bunge’s original Cristaller hexagons, while Figure 6
shows their equal-area (and therefore equal-density) trans-
formation with the aid of the polyfocal projection.

DEVELOPING THE PROJECTION

If S, = 1/s, is the original scale of the map, R is the dis-
tance of a point P from the focus in the original projection,
and f(R) is the distance function (called distance friction
by some writers; see e.g.'’) which describes the effect
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of distance on the intensity of the phenomenon (and there-
fore on map scale at point P), then scale S in a radial direc-
tion over the distance R in the new projection may be given
by

S = S8;+Sf(R) ey

Preferably S should (i) decrease with increasing R, (ii) be
finite and continuous at the focus, where R = 0. The follow-
ing form can thus be suggested for f(R)

a
f(R) = b+C'R(d°+d1t+d2'2+ v Foutealt L) (2)

where g, b, ¢, d; and ¢; are empirical parameters representing
factors influencing the phenomenon. Thus, ¢ and « could
represent time and cost, influencing scale/distance relations.
However, we shall limit ourselves to functions of a single
variable,

By dividing by one of the parameters, say b, this ex-
pression (2) can be simplified thus

alb
fR) = b/b+(c/b)- R@wtdutdai+ ..
and if a/b = A, ¢/b = C,
4
fR) = 14 C-R@Fdid+ .. ©)

We shall now assume that the influence of the focus
decreases simply with the square of the distance, i.e.
dy=2andd,=0(@G=1,2,3,...). The resulting distance
friction function

A
TR ®

thus has a form similar to that of every term of the function
of potential

fR) =

M;
’P"=ZR2

7]

(see e.g. Ref. 14). The latter, though, is discontinuous
when R = 0, whereas the present function is fully defined

at the focus. Substituting (4) in (1) and assuming S, =1

(tantamount to changing the projection of an existing map)
we have
4
S=14_ 42 _
+ 14+-C-R? ®)
Since scale is to change continuously and radially from the
focus,

r=3S8R

where r is the radial distance after transformation, corres-
ponding to original distance R. The former, in terms of
the original coordinate net, is thus a function of the original
distance value and the parameters of the transformation
function, 7.e.

r=Rt— ©)

A measures the ‘power’ of the focus, 7.c. the absolute value
of the thematic variable at this point. C denotes the radial
rate of change of this variable,

1
1

L

Figure 1. The polyfocal transformation of a square grid. The foci with their surrounding area of enlarged scale can easily be discerned.
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Figure 3. The same map after a change of local scale parameters.
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Figure 4. The grid of the map shown in Figure 3. A ‘vanishing area’ of zero scale can be seen in the North Atlantic. Even negative scales

can be envisaged.

If X;, Y; are the coordinates of the focus, then the radial
distance R of point P from this focus is

R=+/(x—X)+(—Y1}
In the new projection the respective distance is represented
by (6), and, since the original coordinates of point P are
x=X;+Rcos « = X;+dx
y=Y;+Rsina= Yﬁ—dy}

O]

therectangular (‘new’) coordinates of point P’ corresponding
to P in the original map (assuming azimuthality at the
focus) are

’ — X+
xl i | rc?s a} ®
¥y =Y +rsin«
Substituting (6) in (8),
. AR\
X = X1—+ (R m) COos «
A-R
= 4 2 Ve
y Y+ <R - 1~;~C-R‘~’> sin «
or
/ ., A-Rcos «|
X = X1+R Ccos ’].‘,_m l
. ®
"= Y,+Rsin 7—'—-A———————’R S «
Yoo TICR
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However, from (7)
Rcos o« = x—X, = dx
Rsina=y—-Y, =dy

so that

A-dx
o e T T e
YT ircR

A-dy
! == —_— == _LA
y y+1+C_R.: y+-dy

x-+dx

(10)

With the aid of this transformation the entire original
map space can be re-mapped around a single focus with
scale tending to 1 (i.e. to original scale) as radial distance
increases.

THE MULTIFOCAL MAP

In order to portray a spatial distribution influenced by a
number of foci it will be assumed that the value of the
thematic variable at any point is equal to the sum of the
values induced by the individual foci. The new coordinates.
of a point will then be equal to the original coordinates plus
the values computed from the individual foci.

In (10) we saw that the coordinates of point P’ are
composed of (i) the original coordinates of point P, (ii) an
increment which is a function of the radial distance from
the focus and the parameters of the latter. For n foci we
shall now write



”n
¥ = xtda At ...+ A%, = x+) Ax;)
=t an
Y =y+dytdyct o+ dyy = y+3 Ay
o

For n foci (X,, Y.), G =1, 2, ..., n) with parameters 4,
C,, the equations of the new projection, derived from the
original map and the distances R, of a point (, y) from the
foci in the latter, are

¥ = x_tgl 1+Ci R?

(12)

where R, =/ (x—X)-+(y—Y,)?
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Figure 5. Cristaller hexagons with equal thematic content on a
square grid (after Bunge).

T
— - “’7/‘
]

b\

PROGRAM POLYMAP

The Polyfocal Projection would be another case (perhaps
it is!) of drawer cartography—mapping innovations which
are kept in a drawer—if it had not been computerised from
the start. A conventional projection can be adapted to a
specific use simply by ‘photographic’ change of scale. The
whole raison d’étre of the Polyfocal Projection is its appli-
cation to occurrences where no two cases are geometrically
similar. A FORTRAN program named POLYMAP has been
written to produce such maps on a Calcomp 11 inch drum
plotter. Chief variables are ‘basic’ scale and a file of points
(the foci) at which scale changes are induced, as well as the
weights or influences of these points A4; and the rates of
change C,; of this influence. These are followed by the point
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