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Fructals and the Accuracy of Geographical
Measures'!

Michael F. Goodchild?

The problems of estimating line length, area, and point characteristics in the earth sciences
have generated substantial but independent literatures. All three problems are of increasing
concern given the current interest in digital capture, processing, and the storage of geograph-
ically referenced data. In the case of qualitative maps, all three are shown to be related to
Mandelbrot’s fractional dimension D (Mandelbrot, 1977) which allows the dependence of
each on sampling density to be predicted. The general results are confirmed by simulation
on surfaces of constant D. They also imply that certain improvements can be made in a
number of previously proposed methods.

KEY WORDS: Fractals, spatial distributions, map analysis.

INTRODUCTION

The problem of defining the length of a coastline, lakeshore, or topographic con-
tour is a recurring theme in a number of spatially oriented disciplines. A recent
paper by Hakanson (1978) recognized that the length of such geographic lines
cannot be defined in a simple manner without also specifying the measurement
method. If measurement is made fram a map, length depends on the degree of
generalization of the map, which is a function of scale. On the other hand, if
[gx)gl!1 is measured on the ground, a scale factor is involved through the sampling
interval necessarily inherent in the method of measurement. Hakanson’s solution
was to propose a method for determining an appropriate scale of measurement,
so that independent investigators studying the same line would at least arrive at
the same length estimate, albeit still scale-specific. He also developed an empiri-
cal expression for the variation in length over scale which can be compared to a
number of earlier and similar attempts in the cartographic literature (for a review
see Maling, 1968, and more recently, Beckett, 1977).
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A mathematical analysis of locally complex map boundaries has been
carried out by Matheron and others (see for example Matheron, 1967, pp. 30-
41). If boundaries are assumed to be created by a directionally isotropic and
spatially stationary stochastic process, then it is possible to relate certain indices,
such as the expected length of boundary per unit area, to the first derivative of
the spatial autocorrelation function at zero distance.

‘The approach used in this paper is based on the work of Mandelbrot, which
is summarized in a nontechnical way in Mandelbrot (1977) and which provides
the conceptual framework for this paper. The next two sections define two of
the central concepts—fractional dimensionality and self-similarity—as they are
used in this paper, but are not intended to introduce the reader to the very
broad scope of Mandelbrot’s contribution,

FRACTALS

Richardson (1961) made an extensive study of the relationship between
geographic length and scale in connection with his research into geographical
causes of conflict. He measured line lengths by sampling points at fixed intervals,
and found a tendency for the sampling interval to be related to the length esti-
mate by a power law, that is, as a straight line on double log paper. Mandelbrot
(1977, and in particular, 1967) provided a framework for these results by intro-
ducing the concept of fractional dimension, as follows.

Suppose that a particular line’s length is measured using two different
sampling intervals Ao and A, and is found to contain ny and 7 such intervals,
respectively. The two length estimates are n\ and ng),; to each interval of
length Ao, there correspond n/ng intervals of length A. Mandelbrot defines the
dimensionality of the line as D =log (n/ng)/log (Xo/}). If the line behaves as a
smooth curve of fixed length, then, when the sampling interval is halved, the
number of such intervals will double and D will be 1.0, the conventional dimen-
sionality of a line. But for a geographic line, the number of intervals will tend to
more than double and D will be greater than 1. The limit to D is provided by
lines that grow with scale so as to eventually fill the space, and thus have a
dimensionality of 2.0. Geographically, this would correspond to a lake with a
shoreline so contorted that it fills the entire area of the lake. Mandelbrot
(1977) coined the term fractal to refer to curves and surfaces with noninteger
dimensionality.

Richardson’s -graphs plot the length versus sampling interval, that is, nA
against A. Rearranging the definition of D above, we have lognA=a +(1 - D) -
log X where a is constant. Thus the straight lines observed by Richardson indi-
cate that D is a constant parameter of the lines he analyzed. The D values range
from near 1 in the case of the relatively smooth coast of South Africa to 1.25
for the west coast of Britain.
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SELF-SIMILARITY

Self-similarity is defined as a property of certain curves where each part of
the curve is indistinguishable from the whole, or that the forin of the curve is
invariant with respect to scale. A corollary of this property is that it should not
be possible to determine the scale of the curve from its form. Furthermore D
should be a constant over all scales. In the case of irregular curves such as coast-
lines, self-similarity must be interpreted statistically—that is, each part of the
curve should be statistically indistinguishable from the whole.

Although Richardson’s data clearly support the existence of self-similarity,
in realty the application of the concept to the natural landscape is limited.
Although the west coast of Britain showed a constant D of 1.25 over sampling
intervals between 10 and 1000 km, a similar analysis of the east coast by the
author showed a variation from 1.15 to 1.31 (Fig. 1). Similarly, a geomorphol-
ogist can usually guess limits to the range of possible scales of a coastline, indi-
cating that self-similarity only applies within those limits. Geomorphic processes
tend to operate at specific scales, and provide visual clues to the determination
of scale. It is interesting that such clues are often misleading when applied to
extraterrestrial landscapes, where the landscape-foriming processes may be
entirely different. The result is that Mandelbrot’s simulated self-similar land-
scapes (see, for example, Mandelbrot, 1977, p. 210) are often more suggestive
of lunar terrain.

The notion of a constant D, or self-similarity, in the natural landscape
occurs repeatedly in Mandelbrot’s work (for example, see Mandelbrot’s abstract,
1975a) and has been rejected by a number of geomorphologists. Hikanson
(1978) followed Scheidegger (1970) who argued that empirical seif-similarity
should be rejected as both premature in view of Richardson’s limited evidence,
and as unacceptable in principle. But self-similarity is only one aspect of the
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Fig. 1. Fractional dimensionality of the east coast of Britain.
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fractal approach, and it would be unwise to reject the entire concept. The
position adopted in these pages is that the performance of D as a variable over
various scales is a useful index of a real line. It shows the variation in estimates
of length and a number of other properties over scales, and the ranges of scale
over which the curve is self-similar.

HAKANSON'S ANALYSIS

Hakanson defined the length of a line by overlaying u grid and counting
intersections. Since the grid lines are a constant 0.5 c¢m apart, the scale of the
map can be used as a type of sampling interval. Figure 2 shows his estimated
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Fig. 2. Hikanson’s data for the shoreline lengths of Swedish lakes against
scale.
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lengths plotted against scale; for a self-similar geographic line the slope of the
graph is expected to be D - 1. It is clear that the slope of each line increases with
scale; the most rapid change of line length with sampling interval occurs on the
most generalized maps in each case. At the finest resolution, on the other hand,
the dimensionality comes close to 1.0, indicating that at this scale the shore-
lines approximate smooth curves.

These results are open to various interpretations. The length estimates were
made from maps constructed independently at each scale. If we assurne that the
degree of generalization incorporated in the drawing of lake shorelines on each
map was roughly similar, then the variation in D between scales can be inter-
preted as due to changes in the statistical nature of the shoreline. For example,
at coarse resolution (1:200,000) shorelines are more contorted than at fine
resolution (1:10,000). On the other hand, it is possible that cartographic gen-
eralization varied from map to map; under this interpretation the low D values
at fine resolution are due to a greater degree of cartographic generalization.

Finally, Hikanson’s estimates are not strictly suitable for an analysis of D.
The method relies on counting the intersections between a grid and the shore-
line of interest, and while in general we would expect two intersections for each
intersected grid cell, in principle any even number of intersections is possible.
Thus the scale of the map, which determines the size of the grid, is not strictly
related to a sampling interval. It would be more appropriate, in terms of an
analysis of fractional dimensionality, to count the number of cells intersected,
rather than the number of intersections. For example, suppose two maps are
available at a scale of 1:100,00Q. One has been drawn at that scale, the other by
photographically reducigg a 1:10,000 map: Two pairs of length estimates are
made from a 0.5-cm grid, one pair by counting intersections, the other by count-
ing cells intersected. Then the latter pairs will be more similar than the former.
In other words, counting cells intersected gives estimates that are more simply
related to scale, and less to how the map was constructed. The next sections
introduce two other estimation problems.

AREA ESTIMATION

Two other forms of estimation from a grid overlay are related to Hikan-
son’s method of length measurement. A common method of estimating the area
of a closed figure on a map is to overlay a grid, and count the number of cells
occupied by the figure. “Occupied by” can be interpreted in two ways—a cell
can be counted if its centroid falls within the figure (the centroid rule) or if
more than 50% of its area lies in the figure (the majority rule). Clearly the esti-
mate will be greatly improved if the area of each cell intersecting the figure is
measured, but this is far more time consuming.

This method of area estimation is commonly used in a number of fields
as an alternative to planimetry. The grid may take the form of an array of square



90 Goodchild

cells, or of regularly spaced points. Several papers have approached the problem
of determining the accuracy of the estimate, which depends on the proportion
of counted cells that lie on the boundary of the figure. Let NV represent the
number of cells counted, n the number on the boundary, and & the length of
each cell side. The area estimate is thus Nb?, and the problem is to determine the
standard error o of this estimate.

If a cell which is intersected by the boundary is counted by either rule as
lying within the figure, it contributes to an overestimation of the area by an
amount egual to the portion of the cell lying outside the figure. Similarly a
boundary ceil which is not counted contributes to an underestimation. Frolov
and Maling (1969) estimated this portion by assuming that the boundary line
could be regarded as a straight line drawn randomly and independently across
cach cell. They tound the mean square area of the cutoff portion, that is, the
error variance in the area estimate for each boundary cell, to be ab*, a = 0.0452.
Lloyd (1976) pointed to a problem with the stochastic process used by Frolov
and Maling to define a random line, and recomputed a as 0.0609. In an inde-
pendent paper Goodchild and Moy (1977) obtained 0.0619 by integrating the
same expression (compare Appendix 1 of Goodchild and Moy, p. 79, with
Lloyd’s expression, p. 25).

The error variance in the estimate of arca depends on the summation of
individual errors trom cach of the boundary cells. In the case of a very contorted
line, the contribution of each cell may be assumed to be independent, so that
the total error variance will be simply the sum of the individual values, or
nab*. The value of o was computed above; on the assumption that each cell is
intersected in a straight line, which is incompatible with independence, but it is
assumed that the true value of a will be approximately the same for a contorted
line.

If the line is in fact smooth, indicating that the straight line model is
approximately true, we will find a strong serial autocorrelation between the
contributions of neighboring cells. The effect will be to increase the error vari-
ance as follows

ol =nst + 25T 3 3 vy

i j>i

where 0% is the error variance in the area estimate, s the error variance per
cell, and r;; the correlation in the contributions of cells 7 and j. Correlation will
likely be strongest when 7 and j are adjacent. The upper limit of r;; is 1, and the
maximum value of ¢? is therefore ns? + 2n(n - 1)s%2 =n%s*, which occurs
when the contributions are perfectly correlated,
More generally, write
0t = nfs? where B =log [n +2 3
t
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Serial independence corresponds to the case §=1, and perfect correlation to
B =72. Thus § can be interpreted as a function of the smoothness of the line. The
standard error of an area estimate is therefore o = a'2nP/2p?.

Frolov and Maling (1969) estimated n by relating it to the area of the out-
line S, through the equation n = K;SY3/yb, where vy is a constant equal to the
root mean square length of a random straight line drawn across a unit square.
Lloyd’s correction gives a value of 0.862 {(Goodchild and Moy computed the
mean length: 0.794). Ky depends on the shape of the figure; K4i2(nt?)y gives
the number of cells intersected by the figure relative to the number that would
have been intersected by a circle ot the same area.

Substituting for 7 in the expression for o above, we obtain

€= Q(I/Z(K3 /7)23/25(6/4)-11,2-(6/2)

for the standard error as a proportion of the area estimate. In terms of the num-
ber of cells counted, N =S/b?, the error is € = a'/2 (K, /v)PANBP -1 Fora con-
stant cell size, € depends on area to the power (8/4) - 1; for a constant area, it
depends on cell size to the power 2 - (§/2). Frolov and Maling followed the
independence assumption which implies § =1, and provided empirical evidence
to support o - % power dependence of error on area as did Moy (1977) and
Goodchild and Moy {1977). Tobler (1974) carried out gridding experiments on a
number of maps, and published estimates of standard error as a function of cell
size. A double log regression analysis of this data gave slopes of -0.733 and
-0.801 for Tobler’s Tables | and I, respectively, again in good agreement with
the theoretical expectation of - 2.

POINT ESTIMATION

The problem to be introduced in this section is that of determining whether
a point lies inside or outside 4 boundary from a grid cell representation of the
boundary. Part of the reason for renewed interest in the problems of estimating
such map properties as length and area from grids lies in their practical impor-
tance in geographic data processing and information systems. Grid representa-
tions appear in remote sensing as pixels and as sample heights in digital terrain
models, to cite two of the more important application areas. The advantages of
a cellular representation lie in the relative ease of digitizing. processing, and dis-
play operations over alternatives such as the polygon representation (for a
current commentary on this controversy see Tomlinson, Calkins and Marble,
1976). In such applications it is important to know the loss of information and
accuracy inherent in a grid, and its relationship to cell size.

The point estimation problem is to determine the probability that the char-
acteristics at a randomly chosen point, as determined from a grid representation,
are the correct characteristics. This is the probability that the cell centroid (for
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the centroid rule) or the majority of the cell (for the majority rule) lies within
the same map zone as the point. For a single zone, the probability 7, that a
point in the zone will be misclassified as belonging to some other zone is given
by the total of the overestimating portions of boundary cells as a proportion of
zone area; conversely, the probability m, that a point in some other zone will be
misclassified as belonging to this zone depends on the underestimation portions.

The relationship between these probabilities and the previous analysis is
straightforward. For those boundary cells which contribute to an overestimation
of area, let & denote the mean fraction of cell area contributed. One half of the
boundary cells are expected to contribute to overestimation, giving a total area
of n8b*/2. Thus my =n8b*2S. Using the same argument for those cells con-
tributing to underestimation and substituting for n gives

7 =1, =(Ky8/2y) bSV2 or  (Kys2y)N~V2

Misclassification probabilities thus decrease with the number of cells used. Moy
(1977) found that empirical evidence supported this analysis.

In the next section we examine the preceding discussion in the light of
fractional dimensionality.

FRACTALS IN AREA AND POINT ESTIMATION

Both area and point problems depend on an estimate of n, the number of
cells intersected by the figure boundary line. This parameter is directly related
to the Hikanson length estimation method, and is identical if the number of
cells intersected is used instead of the number of intersections. The cell side b
is a sampling interval, so n and b can be related through a fractal D:

D =log (n/ng)/log (bo/b)

Rearranging, we have n = ab™P. The Frolov and Maling analysis implies D =1,
in other words, that each boundary line behaves as a smooth curve. The differ-
ence lies in the K5 or shape factor; by assuming it to have a constant value, we
assume in effect that shape is the same over all scales, whereas the shape of a
curve of D> 1 will grow more complex as cell size is reduced, or resolution
increased.

Substituting for n, we now have e =qa'/2g**p2~PFIDS1 For a fractal
curve of dimension 1.5, for example, € will depend on cell size to the power
1.25, assuming = 1. The more contorted the boundary, or the higher its dimen-
sionality, the less rapid the increase in error with cell size.

Taking a similar approach to the point estimation problem, we find that the
mismatch area for a figure A =n8b? =8ab?~?. The misclassification probabili-
tiesare m, =m, = (6a/2) b*"PS"1,
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SIMULATIONS

In this section the relationships developed above are verified by simulation.
A boundary of prescribed dimensionality D can be generated by taking an arbi-
trary contour of a surface of dimensionality D + 1. Let z(x, y) and 2(x + u, y + v)
denote the elevations of a surface at (x, ) and (x +u, y + v), respectively, and
write d = (u? + v)'2. Then consider the expected squared difference between
the elevations at pairs of points the same distance apart. The expectation as a
tunction of distance is termed the variogram of the surface.

Yd) = Elz(x,p)~ z(x +u, v + v)]?

Consider the class of variograms y(d) =d*”. Orey (1970) showed that such
“fractional Brownian” surfaces have profiles, and by extension contours, of
dimension 2 - H.

Mandelbrot (1975b) showed that it is possible to simulate surfaces of
arbitrary H, and thus arbitrary D (Mandelbrot, 19752). The surfaces generated
by the author in Figure 3 show dimensionalities from 2.1 to 2.7 in steps of 0.1,
corresponding to contour line dimensionalities from 1.1 to 1.7,

Each of the surfaces shown in Figure 3 was generated using a 100 X 100
sample grid. Since each one has the self-similarity property, or constant D,
tests were conducted to demonstrate the relationship between cell size and
estimation. A contour was drawn on each surface at a height equal to the mean
of the minimum and maximum heights. Cells were aggregated into larger aggre-
gates of 5 X 5,7 X 7,9X 9,and so on, up to 19 X 19, and classified as black or
white depending on whether the central cell lay above or below the contour,
respectively (the centroid rule).

To estimate the number of boundary cells n as a function of aggregate size
b, a count was made of the number of black aggregates containing at least one
white cell, in other words, cut by the boundary. Table 1 shows the result of

Table 1, Simulations Based on Self-Similar Surtaces of Various D

Regression slopes

Boundary cells: n Point estimation: n,
H D for contour Expected  Observed Expected  Observed
0.3 1.7 -1.7 -2.01 0.3 0.25
0.4 1.6 -1.6 -1.68 0.4 0.25
0.5 1.5 -1.5 -1.32 0.5 0.51
0.6 1.4 -1.4 -1.30 0.6 0.89
0.7 1.3 -1.3 -1.07 6.7 0.79
0.8 1.2 -1.2 -0.96 0.8 0.83
0.9 1.1 -1.1 -1.27 0.9 1.10
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H=09
D-21

Fig. 3. Self-similar surfaces generated by the fractional Brownian process with variable £/,
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regressing log n against log b, and the slopes show general agreement with the
expected value of -D based on the simulated surface’s dimension, despite an
obviously substantial standard error of estimate.

The dependence of point estimation on D was examined by estimating 7,,
the number of white cells within black aggregates as a proportion of the number
of black cells. For this analysis the range of » was from 5 to 33 in steps of 2;
the small number of aggregates for high b is less of a problem in this case than
in the previous one. The table shows the slopes obtained by regressing log 7,
against log b, and again there is broad agreement with the predicted value of
2 - D. The area estimation problem was not simulated because of the difficulty
of performing an analysis over several repeated griddings of the same surface.

MISMATCH ESTIMATION

Switzer (1975) presented an entirely different approach to the general
problem of grid estimation. Mismatch area is defined as the percentage of total
area lying within one boundary but in a grid cell counted as lying outside the
boundary. It is clearly equal to the sum of the underestimating portions of the
boundary cells, in other words 7,S. In this section Switzer’s analysis will be
reviewed in order to place it within the same framework. The notation has been
modified somewhat to make it compatible with the rest of the paper.

7, was defined above as the probability that a randomly chosen point
within the grid representation of a figure does not in fact lie in the figure—
brietly, that a point in a black cell is in fact white. It is an estimate of the total
white area within black cells.

Write P,(d) as the probability that a randomly chosen point in a black cell,
distance d from the center of its cell, is white. Then we have

N
7, =5 >, j P:('}S“ Shj) du(s)

h=1 YAy

where the summation is over each of the NV black cells. The integral is over the
area of cell A, and s, denotes the location of the central point. fs - sy! is there-
fore the distance between the center and every other location in the cell.

Switzer proposes that P,(d) can be approximated by a Taylor expansion in
its derivatives with respect to d. Taking the first two terms, and recognizing that

P,(0) = 0, we have
Pydy=Pyd+ L P d?
where P; and P, are the first two derivatives evaluated at = 0. Thus

my =(Papy + %Pznpz)
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where p, and p, are the mean and mean square distance of a random point from
the cell center, respectively.

Swtizer shows that P, and P; can be estimated from the pattern of white
and black cells in the following way. Let m(1) denote the number of times a
black cell can be found with a white neighbor (defining neighbor as the Rook’s
case again). If we ignore cells on the edge of the map each black cell has four
chances of having a white neighbor and may be counted up to four times, there-
fore. Similarly let m{2}) denote the number of times a black cell has a white
neighbor two cells away, again with a potential count of four for each black cell.
Using calculated values for py and p, for a square cell, Switzer shows that a
good estimate of m, is given by

m, = [0.60 m(1) - 0.11 m(2)]/4N

unless the estimate is negative, in which case it should be set equal to zero.

The main source of uncertainty in applying Switzer’s analysis is in estimat-
ing the derivatives of P,(d). It has been supported by empirical work by both
Switzer and Muller (1978).

The relationship between m(1), 71(2), and scale can be predicted from the
fractional dimension D of the boundary of the figure as follows. Consider one
row of cells, For a given z2rea, the number of black cells in the row is propor-
tional to &7!, and the number with white neighbors to pt=P {(Mandelbrot,
1975b). Thus if the contour has dimensionality 1, the number with white
neighbors is a constant independent of the number of black cells, but for D> |
it rises with increasing resolution. Since the number of rows containing black
cells is proportional to b7!, the total count of black cells with white neighbors,
m(1), is proportional to 57P. Similarly m(2) depends on (2b)'D. In general
Switzer’s estimate can be rewritten as

7, =k(D)S1HFP

k(D) is given by K'[0.60 - 0.11(0.25)7/2}/4 where & is the constant of propor-
tionality in the equation m(1) = £'b* P Switzer’s result is thus compatible with
the previous analysis for 7,5, both in the dependence of 7, on cell size b, and on
the dimensionality of the figure boundary.

For smooth boundaries, with D close to I, the relationship between mis-
match area and cell size is approximately linear. Muller (1978) observed this
empirically, but seems to have misinterpreted the relationship between mis-
match area and the standard error of estimate €, as he mistakenly concluded that
his results disagreed with the predictions of the Frolov and Maling model.

DISCUSSION

The Switzer and Frolov and Maling approaches are very different in appli-
cation. In Switzer's the accuracy of a point estimate is predicted from an analy-
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sis of the grid representation itself, without any reference to any “true” map. On
the other hand Frolov and Maling attempt to predict the outcome of a gridding
at a particular scale, in terms of area estimation, from the characteristics of the
true map. Their analysis therefore includes an examination of the dependence
of estimation on grid size, whereas Switzer implies that m(1) and m(2) should be
determined independently at each scale. The two approaches also lead to differ-
ent kinds of predictions: Switzer of 7, and Frolov and Maling of e.

This paper has demonstrated that both 7, and € are determined by the
number of cells intersected by the boundary, n, which is also the important
parameter in length estimation. Thus all three problems of length, area, and
point estimation can be placed within the same framework. The performance of
n over changes in cell size can be related to a fractional dimensionality param-
eter of the figure, or if it is a contour, of the surface by extension. The relation-
ships were demonstrated by simulation on self-similar surfaces.

Although D is not expected to be constant in reality except for limited
areas and over limited ranges of scale, it clearly provides a very useful summary
from which a number of properties can be predicted. Knowing D, we can esti-
mate the relative benefit of using smaller grid cells or denser sampling, or the
relative cost of increasing cell size. Given the usefulness of the concept, there is a
pressing need for empirical studies to evaluate the precise pattern of variability
in the parameter for different kinds of geographical data, and the ways in which
it is influenced by geomorphic processes.
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