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Abstract

Map data are usually derived from a source that is based on a particular scale of representation and hence are

subject to a particular degree of map generalization. Attempts to display data at scales smaller than the source can

result in spatial con¯ict, whereby map symbols become too close or overlap. Several map generalization

operators may be applied to resolve the problem, including displacement. In this paper we address the problem of

displacing multiple map objects in order to resolve graphic con¯ict. Each of n objects is assigned k candidate

positions into which it can possibly move, resulting in a total of kn map realizations. The assumption is that some

of these realizations will contain a reduced level of con¯ict. Generating and evaluating all realizations is however

not practical, even for relatively small values of n and k. We present two iterative improvement algorithms, which

limit the number of realizations processed. The ®rst algorithm adopts a steepest gradient descent approach; the

second uses simulated annealing. They are tested on a number of data sets and while both are successful in

reducing con¯ict while limiting the number of realizations that are examined, the simulated annealing approach is

superior with regard to the degree of con¯ict reduction. The approach adopted is regarded as generic, in the

context of map generalization, in that it appears possible in principle to employ several map generalization

operators combined with more sophisticated evaluation functions.

Keywords: con¯ict removal, scale reduction, search algorithms, gradient descent, simulated annealing,

trial positions

1. Introduction

In the ®eld of computer cartography, automation of the process of map generalization has

come to assume increasing importance. The problem is one of selecting and adjusting the

symbols on a map to suit the purpose of the map and the scale of the required output [15].

This task has traditionally been performed by cartographers and it is re¯ected in the

widespread publication of maps that have a nominal scale that affects the level of detail

and the degree of abstraction that may be expected on the map. The now widespread use of

geographical information systems (GIS), with their integral capacity for producing maps,

has introduced a requirement to include a facility for map generalization within these

systems.

Much of the digital map data in use in GIS and in map production systems is in some

sense pre-generalized, having in many cases been derived from cartographic products that

are based on a particular scale of representation. Problems arise, however, when the user



requires a map at a scale signi®cantly smaller than that associated with the source data.

Typical consequences of displaying pre-generalized data at a smaller scale than was

originally intended are that the detail of individual map features may become too small to

be legible, while neighboring symbols that should be clearly discriminated may become

too close, or they may overlap each other. These latter problems of graphic con¯ict arise in

particular when the map symbols are no longer a true scale representation of the feature

they represent. For example a road symbol may be much wider, when map scale is taken

into account, than the width of the road on the ground.

In recent years considerable efforts have been put into automating map generalization

(collections of papers dedicated to map generalization are to be found in [4], [12], [21]).

Most of this effort has, however, been directed at the automation of individual operators

required to perform generalization. In summary, these operators carry out tasks that

include the following [18]:

* Reduction of the detail in linear features and boundaries.
* Elimination of features that may be too small to discern.
* Collapse in the dimensionality of areal features to lines or points.
* Amalgamation of adjacent features of the same or similar category.
* Exaggeration of important features otherwise too small to represent.
* Typi®cation (or caricature) of the form of features as part of the process of detail

reduction.
* Displacement of adjacent features that are in graphic con¯ict with each other.

In high quality map production the need for full automation is open to question, as it may

be argued that the mapmaker, a cartographer, must be able to exercise judgment in creating

an effective map design. Nevertheless, many GIS applications, and the increasing market

for maps on the Internet, have created a demand for automated map generalization that

adapts to the requirements of the user, in the absence of a cartographer. This motivates the

pursuit of automation of the entire process of map generalization.

Automation of some of the individual generalization operators can be found in

commercial GIS systems such as Intergraph's Map Generalizer and Laser-Scan's Lamps2.

Use of the operators, however, still requires manual process control that involves the user

in deciding which operators to apply, in which order, and how they should be applied in

terms of relevant distance tolerances and other control parameters. Automating process

control is essential if map generalization is to graduate from an interactive user-controlled

procedure to one that is fully automated [1].

There are considerable dif®culties in automating process control. This is because an

effective map is one in which care has been taken to address the interactions between all

map symbols, rather than treating them in isolation. These interactions may give rise to

obvious graphic con¯icts of proximity and overlap. They may also determine whether

important messages, regarding the structure and form of the mapped features, are

effectively communicated. The latter interaction could be expressed for example in the

alignment of buildings, clustering of woods and lakes, and parallelism between

neighboring rivers and roads. It may be that the problems of graphic con¯ict can be
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addressed by a combination of possible actions such as elimination, displacement,

amalgamation and boundary simpli®cation, combined with appropriate techniques for

evaluating the quality of the result. However, a problem with application of individual

operators is that each time one of them is applied it may have an effect on a map symbol

that was not previously in con¯ict, resulting in propagation of con¯ict within the map

space. Thus an important aspect of process control is the need for effective strategies for

con¯ict resolution in combination with appropriate quality evaluation.

The purpose of this paper is to present the results of some experiments concerned with

resolving graphic con¯ict between multiple map objects. We consider the particular

problem of areal map objects, such as buildings that may be too close to, or overlapping,

each other. As indicated above, there are several types of action that may be taken to

resolve con¯ict. Here we con®ne ourselves to the use of a displacement operator applied to

rigid objects (®gure 1). We use the operator to generate for each object a set of candidate or

trial positions, each of which may be regarded as a possible state for that object. The

approach adopted is notable for applying experience gained in developing con¯ict

resolution procedures in the sub-problem of automated text placement [6], [7], [8], [23].

Just as in that context, automation of map generalization can be regarded as an attempt to

meet a set of constraints [16]. Provided the constraints can be quanti®ed, then an

evaluation function (or objective function) can be constructed to determine the degree to

which the constraints are met, thereby selecting map solutions that are superior to others

Figure 1. Resolving con¯ict by object displacement. (a) Map at original scale. (b) Map at approximately 1/4 its

original scaleÐsome objects become indistinguishable. (c) Map after object displacementÐcon¯ict has been

removed.
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with regard to the constraints. In demonstrating the validity of the approach to the limited

problem considered here, it is envisaged that it may be extended with multiple

generalization operators and with more complex evaluation functions.

We examine the use of two optimization techniques, steepest gradient descent and

simulated annealing, and present results of the use of the techniques. A demanding aspect

of the application of such search procedures is the need to evaluate numerous alternative

states of the map. This requires ef®cient procedures to perform tasks such as ®nding and

measuring distances to nearest neighbors of a given map object and detecting overlap

between map objects. Here we exploit triangulation-based procedures that have been used

previously to implement individual map generalization operators [9], [19].

In the remainder of the paper we start in Section 2 by presenting map con¯ict resolution

as a search problem and introducing some relevant optimization procedures. We then

summarize in Section 3 the characteristics of the generalization toolkit and the associated

triangulation-based data structures that we use to experiment with the con¯ict resolution

procedures. Both techniques that we apply make use of a con¯ict detection procedure,

which is summarized in Section 3. In Section 4 we describe the main properties of the

gradient descent and simulated annealing procedures, focusing on their application to map

object con¯ict reduction. This is followed in Section 5 by details of experimental results

and related discussion. The paper concludes with some closing remarks, which include the

potential for future related work.

2. Map con¯ict resolution as a search problem

When map generalization is performed, each map object at the source scale is subject to a

set of possible transformations that alter the state of the object, through the individual

operations enumerated in the Introduction. Some of these operations may be largely

predetermined, given a speci®c target scale, in that there may be ®xed levels of sinuosity

and ®xed sizes for certain map symbols, such as a line representing a particular class of

road. Other operations may not be entirely predetermined in that they depend upon the

interaction between multiple map symbols. Thus, there is a choice of possible states for

individual objects, the most appropriate only being determined by the combined states of

multiple objects. From an arti®cial intelligence perspective, the set of all possible states in

which the map could ®nd itself as a consequence of considering each individual object

state (including those that resulted in objects being deleted or merged to form new objects)

constitutes a search space. If we also note that each possible map state is subject to

evaluation with regard to the extent that it satis®es the cartographic objectives, then it is

possible to envisage applying the various optimization procedures that are available (e.g.,

[17], [22]) to ®nd the map state that best meets the objectives.

In the case of map generalization it is easy to see that the problem is a demanding one in

that there could be a very large number of possible states to consider. If each of n objects

was subject to k possible states then there are a total of kn alternative realizations of the

map. Christensen et al. [6] have presented the cartographic name placement problem in

terms of a search space, an objective function and various possible optimization methods

386 WARE AND JONES



that can be used to ®nd a satisfactory solution. The possible states of each label may be

generated from a set of positions relative to the labeled features, each of which may be

prioritized. Evaluation of an objective function may be carried out using factors such as

the number and degree of overlaps between labels, and between labels and map features, in

combination with the associated individual priorities. As Christensen et al. [6] have

pointed out, the problem for any realistic number of point-labeled features only is NP-

hard. Attempts to solve the problem by an exhaustive search of all possible states are

therefore impractical and it is necessary to consider sub-optimal strategies.

In map generalization the number of possible states can be expected to be considerably

larger than within the sub-problem of name placement, due to the range of possible

operations that could be applied to each object. The cost of evaluating the objective

function can also be expected to be greater due to the range of possible constraints that

could be applied. Thus evaluation could require not just measuring separation distances

and testing for overlap, but also examining the shape of map features and analyzing

patterns based on multiple objects. The cost of generating each state is also potentially

large (as it can be in name placement for linear and area objects) since it could involve

complex computational geometry procedures, such as those for medial axis transformation

and for amalgamation of neighboring features.

2.1. Iterative improvement algorithms

Awell-established approach to solving large optimization problems is to adopt an iterative

improvement algorithm. The concept of an iterative algorithm is illustrated by Russell and

Norvig [17] by considering all states (i.e., in our case, all map realizations) to be laid out

on the surface of a landscape. The elevation at any point on the landscape represents the

quality measure returned by the evaluation function for the particular state at that point. An

iterative improvement algorithm will move around the landscape in an attempt to ®nd the

lowest troughs, which correspond, to optimal states. Iterative improvement algorithms fall

into two main categories, namely, gradient descent and simulated annealing (see [13],

[14], [17] for good reviews of these, and other, search algorithms). Gradient descent

algorithms always make changes that improve the current state (i.e., movement is always

downhill), whereas simulated annealing algorithms can sometimes make changes that

make things worse (i.e., movement is sometimes uphill).

Simple gradient descent. Figure 2 describes a simple gradient descent implementation,

based on the simple hill climbing algorithm given by Rich and Knight [14]. The algorithm

is quite straightforward, but is not guaranteed to ®nd an optimal solution since it is possible

to arrive at a non-optimal current state from which no better state can be reached. This

occurs when the search descends into a local minimum, from which all moves appear to

generate a worse state. To use the landscape analogy once more, a local minimum can be

thought of as a trough in the landscape that happens to be higher than the lowest point on

the landscape. Several ways of trying to deal with the problem of local minima are
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available (e.g., random-restart, backtracking and multiple-moves). However, the

exponential nature of most realistic search spaces can make such remedies impractical.

Simulated annealing. Searches based on simulated annealing [11] attempt to overcome

the problem of getting caught in local minima. They achieve this by sometimes allowing

uphill moves (and also neutral moves) to be made. In other words, the current state is

sometimes allowed to get worse (or move to some other equivalent state). As can be seen

from the algorithm outline (®gure 3), the structure of the simulated annealing algorithm is

quite similar to that of the gradient descent algorithm. As with gradient descent, simulated

annealing always accepts a new state if it is better than the current state. However, in cases

where the new state is, in evaluation function terms, worse than or equal to the current state

then simulated annealing will sometimes accept the new state with some probability P less

than 1. This probability is de®ned as

P � eÿDE=T :

DE represents the ``badness'' of the new state (i.e., the amount by which the evaluation

function is worsened). P decreases exponentially as DE increases (i.e., a slightly worse

new state is more likely to be accepted than a much worse one). T, called the temperature,

decreases over time according to an annealing schedule. At higher values of T ``bad''

moves are more likely to be accepted. When T � 0, negative steps are always rejected and

the algorithm behaves very much like gradient descent. In practice, the probability P is

usually tested against a random number R�0 � R � 1�. A value of R5P results in the new

state being accepted. For example, if P � 1=3, then we would expect, on average, for

every third worse new state to be accepted. The initial choice of T and the rate at which it is

Figure 2. Simple gradient descent algorithm.
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decreased has an effect on how well the algorithm works. Generally, the slower the rate of

change, the better the result. However, the processing overheads associated with the

algorithm will increase as the rate of change in T becomes more gradual. In practice, a

suitable annealing schedule is usually decided upon after some preliminary experimenta-

tion.

3. The simplicial data structure

Before describing the application of iterative improvement algorithms we will ®rst

summarize the spatial data structure and some relevant functions that are used to

implement con¯ict detection procedures necessary to the evaluation functions used in our

experiments. The methods presented in this paper represent part of an on-going

development of the Map Authoring and Generalization Expert (MAGE) system [2], [3].

The generalization functions within MAGE make extensive use of a data structure based

Figure 3. Simulated annealing algorithm.
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on constrained Delaunay triangulation called a simplicial data structure (SDS) [2], [3], [9],

[19]. We provide here a brief description of aspects of the SDS relevant to this paper.

The SDS is made up of four primary entities, namely, map features, triangles, edges and

vertices. We deal here with a map M made up from a collection of three types of map

feature. The feature types are:

* Planar polygonal objects O.
* Free space regions F, which lie between, or are contained within, polygonal objects.
* Linear objects L.

The SDS models M by means of a constrained Delaunay triangulation CDT [5] in which

the edges of all polygonal objects O and all linear objects L act as constraints (®gure 4).

Each object in O and each free space region in F is de®ned in terms of references to those

triangles of CDT lying within its boundary. Each triangle of CDT references its three

constituent edges, three Boolean ¯ags which indicate the direction (clockwise or

anticlockwise) of each of its edges relative to itself, plus the polygonal object or free space

region to which it belongs. Linear objects are de®ned by reference to their constituent

edges. Each SDS edge is described by references to its start and end vertices, and

adjacency information in the form of references to the triangles to which it belongs. It is

this adjacency information that provides the basis for rapid movement through the SDS

during search operations. In the case of an edge forming part of a linear object, that edge

Figure 4. A constrained Delaunay triangulation of a simple map. Bold triangle edges correspond to map

feature edges.
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will also maintain a pointer to the object in L to which it belongs. Vertices simply consist

of a reference to x; y co-ordinate values.

3.1. Proximal con¯ict detection

Taking a single polygonal object oi in M, we are concerned with ®nding the set Ci

consisting of all other polygonal objects and all linear objects in M which lie within a

distance Dtol of oi. We present here a SDS-based algorithm for ®nding Ci. Its ef®ciency is

dependent on the explicit proximity properties inherent to constrained Delaunay

triangulation. The algorithm, Detect_Con¯ict, is based on techniques presented in [10],

[20], and is illustrated in ®gure 5.

Figure 5. Algorithm Detect_Con¯ict.

CONFLICT REDUCTION IN MAP GENERALIZATION 391



Detect_Con¯ict works by detecting the con¯ict associated with each edge of oi in turn.

For a particular object_edge this initially involves placing that edge on a previously empty

Queue. Edges are subsequently removed from this queue and processed. For any such

queue_edge this processing involves a series of actions upon each of its adjacent triangles.

The ®rst of these actions entails a test to see if the adjacent_triangle belongs to oi. If it does

then no further processing of adjacent_triangle is required. Alternatively, if adjacent_
triangle does not belong to oi, then more work is needed. First, we carry out a check to see

if adjacent_triangle of queue-edge belongs to an object (other than oi). If this is the case

then object is added to Ci. Processing of adjacent_triangle concludes with an examination

of each of its edges. If any such triangle_edge lies within a distance Dtol of object_edge
then it is added to the Queue. It follows that the Queue will always only contain edges that

are within a distance Dtol of the object_edge currently being processed. The algorithm

makes use of the following functions:

* GetObjectEdges returns a list of edges making up the boundary of any polygonal

object.
* GetObject returns the object to which a given triangle or edge belongs (if such an

object exists).
* GetDistance returns the minimum distance between two edges.

4. Map object con¯ict reduction by iterative improvement

As indicated earlier, iterative improvement algorithms may have the potential for

addressing a range of tasks that fall within the scope of process control in map

generalization. The intention here is to explore their use within the con®nes of the sub-

problem of resolving graphic con¯ict due to violation of constraints of proximity and

topology. The assumption is that it should be possible to add further generalization

operators and to develop evaluation functions that take account of a wider range of

constraints.

We now describe two map object con¯ict reduction algorithms based on the iterative

improvement algorithms described previously. The ®rst uses a steepest gradient descent

approach, similar to the discrete gradient descent algorithm presented in [6] for point-

feature label placement (PFLP). The second adopts a simulated annealing approach, and,

again, is similar to a PFLP algorithm presented in [6]. Before describing the algorithms

individually, we discuss three elements common to both. These are the search space, the

evaluation function and the change state function.

Search space. The search space consists of all possible realizations of the map, and is

characterized by the set of trial positions associated with each map object. For a map

consisting of n objects, each with k trial positions, the search space will consist of kn

elements. The trial positions associated with a particular object represent a discrete

approximation to the continuous space into which it is permissible for that object to move.
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The continuous space corresponds to a region that extends from the object by a distance

equal to the maximum distance Ddisp that the object can be displaced. In the case of a

``rigid'' areal object, such as a building, an object can be shifted into a trial position by

application of a displacement vector to each of its vertices. It is possible to de®ne a set of k
displacement vectors for each object from which a series of k trial positions can be

generated. The way in which displacement vectors are generated governs the distribution

of trial positions about a given object. To ensure an even distribution of trial positions over

the region we make use of a ®xed template of displacement vectors, as illustrated in ®gure

6, with trial position 1 designated as being the object's initial location.

Evaluation function. The purpose of the evaluation function is to assign to any given

element of the search space (i.e., any map realization) a value that represents the relative

quality of that element. The measure of quality we adopt is based on minimizing the total

number of con¯icts within a particular element (i.e., the fewer the con¯icts, the better the

solution). Con¯ict is evaluated using the function Evaluate_Con¯ict. The viability of any

iterative improvement algorithm depends heavily on it having an ef®cient evaluation

function. In order to meet this requirement, Evaluate_Con¯ict makes extensive use of the

SDS-based con¯ict detection procedure, Detect_Con¯ict, described previously.

Evaluate_Con¯ict allows for multiple distance tolerances and differentiates between

various types of con¯ict. This means that each class of object can be assigned a distance

tolerance appropriate to that class, and ``seriousness'' weightings can be applied to

con¯icts involving objects of various class pairings. For example, the class of object

representing buildings is assigned a minimum separating distance tolerance value of

10 units, whereas the class representing region boundaries is given a value of 5 units.

Figure 6. Displacement vector template for generating trial positions. tp1 � trial position 1. There are 29 trial

positions in total.
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Furthermore, a con¯ict between two building objects is deemed less serious than con¯ict

between a building object and a region boundary object (since the region boundary is

thought to be a more important map feature than any object positioned within that region).

Change state function. Movement from one state to another (i.e., from one map

realization to another) is made possible by the function Change_State, which moves a

single object from one of its trial positions to another.

4.1. Con¯ict reduction using steepest gradient descent

Our steepest gradient descent algorithm (SGD) is presented in ®gure 7. The initial state

consists of a map with each of its objects in its original position (i.e., trial position 1). The

con¯ict evaluation function is then applied. In the event of there being no con¯ict the

algorithm terminates at this point. Alternatively, if there is con¯ict, the algorithm enters its

Figure 7. Algorithm SGD, a steepest gradient descent algorithm for con¯ict reduction.
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main loop. Each time through the loop an attempt is made to ®nd the single change in state

that results in the most immediate improvement (it is here where steepest gradient descent

differs from simple gradient descent in that the latter accepts the ®rst change in state that

offers any improvement). If found, this change in state is applied. In other words, each

time through the loop we implement the single object repositioning that results in most

improvement. The loop is repeated until no further improvement can be made (i.e., the

current state is a global or local minimum). Note that in their implemented form, SGD and

SA (see next section) maintain up to date descriptions of the con¯ict associated with each

object. This means that apart from its initial call, when all con¯ict must be detected,

Evaluate_Con¯ict only has to recompute the con¯ict associated with the object undergoing

displacement (although the con¯ict descriptions of objects with which this object was or is

in con¯ict might also need updating).

4.2. Con¯ict reduction using simulated annealing

The simulated annealing algorithm for con¯ict reduction, SA, is shown in ®gure 8. As with

SGD this algorithm begins by evaluating the initial con¯ict. Again, if no con¯ict exists the

algorithm terminates, otherwise the algorithm enters its main loop. A signi®cant difference

between SA and SGD is that here, only one object move is tested per loop cycle. The object

concerned, and the trial position to which it is moved, are picked at random. If the new

position results in a new state that is better than the current state (i.e., DE50) then the

change is accepted. If the new state represents a worse or equivalent solution, then it is still

accepted with probability P (i.e., if the random number R5P). As indicated earlier, the

key factor determining the success or failure of SA is the choice of annealing schedule. Our

schedule follows the format used in [6]. This involves setting T to an initial value V. At

each temperature a maximum of Wn object repositionings (successful or unsuccessful) are

allowed, where n is the number of map objects. After every Wn repositionings T is

decreased by X%. Also, if more than Yn successful repositionings are made at any one

temperature then T is immediately decreased. If no successful repositionings are made at a

particular temperature then the algorithm terminates. Finally, a limit on the maximum

number of temperature stages allowed is set to Z.

4.3. Detecting topological error

A problem with adopting the trial position approach as described so far is that we run the

risk of introducing topological error into the map. This is particularly so when dealing with

situations involving object classes of differing importance, and also in situations where

negative moves are allowed. In such circumstances it is possible to force map objects to

overlap each other (and, in extreme circumstances, to force an object to move from one

side of a neighboring object to another).

It has been shown previously that monitoring the relative edge direction of SDS

triangles can assist detection of topological error of this kind [9]. It is always the case that,
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Figure 8. Algorithm SA, a simulated annealing algorithm for con¯ict reduction.
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should topological error have occurred, one or more of the triangles immediately

surrounding the objects concerned will have become inverted (i.e., relative edge directions

will have changed). Note, however, that the presence of inverted triangles does not

necessarily indicate the presence of topological error. One approach to resolving the

problem of topological error would be to perform a check for inverted triangles subsequent

to each object displacement. Then, if any inversions were found, geometric processing

would be carried out to prove or disprove the presence of topological error. If it were

present, then the object displacement would be reversed. However, in practice, it is noted

that inverted triangles that are not the result of topological error usually signal neighboring

object pairs that have become signi®cantly misaligned (®gure 9). Because of this,

Evaluate_Con¯ict has been modi®ed to reject all object displacements that result in

inverted triangles. This has the positive effects of ensuring topological consistency and

helping to maintain alignment between objects, but can sometimes result in acceptable

object displacements being rejected.

5. Experimental results

The two iterative improvement algorithms described have been implemented using the C

programming language. The test data sets used consist of two types of feature, namely,

movable polygonal objects and ®xed, linear region boundaries. It should be remarked that

Figure 9. Object misalignment caused by object displacement. (a) Part of a map region, prior to displacement,

showing two objects o1 and o2. For the sake of clarity, only a single SDS triangle, de®ned by vertices (v1; v2; v3),

is shown. (b) Subsequent to displacement of o1, the triangle becomes inverted.
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immovable boundaries are employed here to demonstrate some ¯exibility with regard to

types of map object and their associated differing tolerances. They are not required as part

of the procedure. All experiments were carried out on a Sun Enterprise 2 model 2200

(26200 MHz Ultrasparc processors).

5.1. Initial experiments

Initial experiments involved the use of 5 hand-generated test data sets (®gure 10). These

experiments were carried out mainly to get a feel for how well the algorithms performed,

and in the case of SA, to discover what sort of annealing schedules worked best. Each data

set consists of a small number of polygonal objects contained within a single region

boundary. For all experiments, con¯ict between a polygonal object and the region

boundary was deemed more serious than con¯ict involving polygonal objects only.

Minimum separating distance tolerances values were chosen so as to provide reasonable

numbers of initial polygon/boundary and polygon/polygon con¯ict, while maximum

polygonal object displacement values were set so as to give the algorithms a reasonable

chance of success.

In the case of the SA experimental results shown, the annealing schedule was as follows:

* The initial temperature value was set to 3.0 (i.e., V � 3:0).
* At each change in temperature, T was decreased by 10% (i.e., X � 10).
* A decrease in temperature occurred after every 100n repositionings or every 30n

successful repositionings (i.e., W � 100, Y � 30).
* The maximum number of temperature stages was set to 50 (i.e., Z � 50).

Each algorithm was executed 100 times for each data set. The results illustrated in ®gures

11 and 12, and described in tables 1, 2 and 3, show that application of either algorithm

reduces the amount of con¯ict. Note that for SA, the con¯ict reduction achieved can differ

for a particular data set from one program execution to the next. The reason for this is that

Table 1. Tolerance values and initial con¯ict values. Tolerance values for BDTopo data are given in metres.

P/PÐpolygon/polygon con¯ict, P/BÐpolygon/boundary con¯ict.

Data set P/P tol P/B tol Ddisp Initial P/P Con¯ict Initial P/B Con¯ict

1 2.0 1.5 2.0 10 4

2 3.0 3.0 3.0 6 4

3 2.0 1.5 2.0 12 5

4 3.0 3.0 3.0 12 7

5 2.0 1.5 3.0 26 1

BDTopo 7.5 7.5 7.5 236 36
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simulated annealing involves a degree of randomness; we cannot expect the same result

each time the algorithm is run. The SA results given are representative of the complete set

of results and are consistently better than SGD with regard to con¯ict reduction.

The superior performance of SA is due to its ability to escape from local minima, as

predicted. This can be explained to some extent by reference to ®gures 10d, 11d and 12d,

and in particular, to object o1. As can be seen, initially o1 is not in con¯ict with any other

Figure 10. The ®ve hand-generated test data sets. An edge between a pair of map features indicates that those

features are in con¯ict with each other. (a) Data set 1. (b) Data set 2. (c) Data set 3. (d) Data set 4. (e) Data set 5.
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map feature. This means that throughout execution of SGD, o1 might (and in this case

does) remain in its original position (since negative and neutral moves are disallowed).

However, the three objects above o1 (i.e., o2, o3 and o4) are in con¯ict. Unfortunately,

because of the presence of o1, they have no space to move into. In other words, o1 is acting

as a block to con¯ict resolution. Unlike SGD, SA sometimes permits negative and neutral

Figure 11. Data sets 1±5 after con¯ict reduction using SGD.
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moves and, as can be seen, o1 undergoes such a move. This has the effect of freeing up

space for o2, o3 and o4 to move into. In this case, the success of SA is dependent on:

* The object o1 being chosen at random from the set of all objects.
* A particular trial position being chosen at random from the set of all trial positions.
* The random number R being less than the probability P.

Figure 12. Data sets 1±5 after con¯ict reduction using SA.
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It is clear that the chances of all three conditions being met will increase or decrease

according to the choice of annealing schedule.

5.2. Experiments with topographic data

Further experiments made use of IGN-France BDTopo data (1:25,000) (®gure 13a),

consisting of 321 polygonal objects contained within 16 free space regions. The minimum

separating distance tolerances used assume a visual perception threshold of 0.15 mm and a

map scale reduction to 1:50,000. As before, each test was repeated 100 times. It can be

seen from the results in tables 1, 2 and 3 that, while both algorithms signi®cantly reduce

con¯ict, SA is a clear winner, both in terms of con¯ict reduction and execution time. The

SGD result is shown in ®gure 13b and a single SA result is shown in ®gure 13c. The better

con¯ict reduction performance of SA is again attributed to its ability to escape local

minima. This can be illustrated by reference to Region 1 in ®gure 13. Prior to con¯ict

reduction, 11 of the 23 polygonal objects contained within the region are involved in

con¯ict of some sort. Application of SGD results in only 3 of these 11 objects becoming

completely free of con¯ict, whereas application of SA brings about the removal of all

Table 2. SGD results. All times are given in seconds. s.d.Ðstandard deviation, P/PÐpolygon/polygon con¯ict,

P/BÐpolygon/boundary con¯ict.

Time Taken (s)
Data Set Final P/P Con¯ict Final P/B Con¯ict Realizations Tested Average s.d.

1 4 0 3509 0.191 (0.001)

2 2 0 2088 0.154 (0.001)

3 4 0 3828 0.142 (0.001)

4 10 1 3016 0.144 (0.001)

5 6 0 4640 1.228 (0.004)

BDTopo 81 1 1045856 103.649 (0.390)

Table 3. SA results. All times are given in seconds. s.d.Ðstandard deviation, P/PÐpolygon/polygon con¯ict,

P/BÐpolygon/boundary con¯ict.

Final P/P Con¯ict Final P/B Con¯ict Realizations Tested Time Taken (s)
Data Set Average s.d. Average s.d. Average s.d. Average s.d.

1 0.0 (0.0) 0.0 (0.0) 13999.8 (175.5) 0.833 (0.009)

2 0.0 (0.0) 0.0 (0.0) 10672.6 (36.3) 0.723 (0.012)

3 0.0 (0.0) 0.0 (0.0) 6323.8 (3389.0) 0.273 (0.139)

4 0.0 (0.0) 0.0 (0.0) 8234.2 (1450.5) 0.391 (0.067)

5 0.4 (0.8) 0.0 (0.0) 17706.2 (1869.2) 4.491 (0.522)

BDTopo 26.6 (2.9) 0.0 (0.0) 342302.2 (18613.1) 39.665 (2.173)
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con¯ict. The poor performance of SGD is a result of its inability to move con¯ict-free

objects (of which there are 12 originally), which means that less opportunities exist to free

up space for objects that are in con¯ict to move into.

Both algorithms succeed in limiting the number of map realizations needed to be

generated and evaluated. For example, in the case of the BDTopo data, out of a total of

29321 possible realizations, SGD generated and evaluated 1,045,856 and SA generated and

evaluated, on average, 342,302. The corresponding average execution times are 103.649 s

and 39.665 s. It is anticipated that some improvement in execution times may be achieved

by ®ltering candidate trial positions to omit those that will always result in con¯ict due, for

example, to the presence of an immovable symbol. The use of trial position ®ltering may

also be relevant to the generation of solutions that retain original patterns of map objects.

6. Concluding remarks

This paper has sought to apply the concept of iterative improvement to the problem of

automated map generalization. It has provided two new algorithms, SGD and SA, for

Figure 13. Roads and buildings extracted from IGN-France BDTopo data (1:25,000). Buildings involved in

con¯ict of some sort are shown in gray. (a) Original data. (b) After con¯ict reduction using SGD. (c) After

con¯ict reduction using SA.
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carrying out map con¯ict reduction via displacement operations. Experimental results

have shown both approaches to be successful in reducing con¯ict. In short, we have shown

iterative improvement techniques to be of potential bene®t in helping us reach the goal of a

fully automated generalization system. Of the two algorithms, SA (simulated annealing)

has proven to be the most successful. This is explained by its ability to escape local

minima. The results lead us to believe that continued development of the SA approach is a

promising way forward in the search for improved solutions.

In order to automate more fully the generalization task, there is the need to integrate

other generalization functions within con¯ict resolution procedures. As indicated earlier in

the paper, the success of such integration will require the development of more advanced

evaluation functions that take account of a wider range of constraints, including those of

form and structure.
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