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Three essential building blocks for automated 
generalization 

Robert Weibel 
Department of Geography, University of Zurich. Winterthurerstrasse 190, CH-8057 
Zurich, Switzerland 

5.1 Introduction 

In the past few years, applications of geographic information systems (GIS) have 
matured, and databases of large size have been built. Users are now beginning to realize 
the lack of generalization functionality with respect to the development of value-added 
products from the initial database and the update of existing databases, particularly when 
multiple scales are involved. Since the majority of results of GIS-based modelling activ- 
ities is still communicated to the end-user in a graphical form, functions are needed for 
automated cartographic generalization. It must be possible to derive display products 
from a basic database at arbitrary scale or symbolization, and to maintain good read- 
ability. In a digital environment, however, the requirements of generalization extend 
beyond the original focus on cartography, and include functions for model generalization 
or model-oriented generalization, as will be discussed below. 

In order to meet the requirements of today's GIS applications, research needs to tackle 
various problems. Miiller et al., in Chapter 1, have attempted to summarize the state of 
the art of research in generalization, and outline the problems that would need to be 
addressed in the future. The discussion here will concentrate on three issues which are 
considered as particularly important for the progress of generalization research: 

model generalization, 
knowledge acquisition, and 
the evaluation of generalization alternatives. 

These elements are considered as 'essential building blocks' for computer-assisted gen- 
eralization, since they form central prerequisites and seem most needed for a compre- 
hensive solution of generalization in the digital domain. Not all of these problems are on 
the same level of complexity and functional extent, but they all seem important. The 
discussion of these three 'pikes de rksistance' attempts to identify the subproblems that 
are involved, and to offer some indications based on our own experience. It is clear, 
however, that no comprehensive or final solutions can be presented at this point. It is also 
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obvious that these are not the only important issues in generalization. There are other 
problems that should also receive ample attention, such as the development of more 
suitable data structures to support map generalization, methods for knowledge represen- 
tation, or enhanced user interfaces. 

5.2 Model generalization 

Today, there is a consensus in the research community that, apart from graphics-oriented 
generalization, there is also a need for model or model-oriented generalization (see 
Chapter 1). 

What does model generalization encompass? One of the major objectives of model 
generalization certainly is controlled data reduction in the spatial, thematic, and/or tem- 
poral domain. Data reduction may serve a variety of purposes. A classical aim is to 
reduce data volume in order to save storage space or speed up computations. Another 
important reason to reduce the accuracy and resolution of a dataset is the homogeniza- 
tion of different datasets in the process of data integration (or data fusion). For instance, 
the values of a monthly time-series may need to be reduced to a yearly time interval, in 
order to develop a unified series. Reclassification or formation of complex objects, which 
are processes of data reduction in the thematic domain, may be used to prune the solution 
space for many computations. If data reduction is applied as a filter process (to contin- 
uous data), it may be used for the detection and elimination of data errors (Heller, 1990). 
Besides data reduction, an important objective of model generalization is the derivation of 
databases at multiple levels of accuracy and resolution. This is equivalent to deriving a 
Digital Landscape Model DLM2 of reduced contents from an original DLMl (Brassel 
and Weibel, 1988; Muller, 1991a). Finally, of course, model generalization may precede 
cartographic generalization as a preprocessing operation. For instance, the selection of 
relevant features may be purely model driven and coordinates may be filtered to a 
resolution corresponding to the target scale of the intended map. This approach corre- 
sponds to first reducing a DLMl into a DLM2, and then deriving a Digital Cartographic 
Model (DCM: Brassel and Weibel, 1988; Muller, 1991a). 

It is perhaps interesting to note that, so far, most of the research carried out in model 
generalization has focused on discrete data, such as objects included in cadastral or 
topographical maps (Chapter 4; Chapter 18). However, besides discrete objects which 
can be clearly delineated and discerned, geographic databases also include digital repre- 
sentations of phenomena that vary continuously over space and/or time. Model general- 
ization should, therefore, also include methods to deal with those kinds of data. Examples 
of continuous variables include terrain, soil salinity, or population density. Commonly, 
such variables are measured at discrete locations, and the continuous surface is estimated 
through interpolation. In order to derive a surface of reduced accuracy, the generalization 
process must start from the original measurements. A possible procedure for model 
generalization of digital terrain models (DTMs) is demonstrated in Weibel (1992). It is 
based on an algorithm for iterative filtering of triangulated DTMs developed by Heller 
(1990). The use of the term 'statistical generalization' by Brassel and Weibel (1988) for 
what is now commonly known as model generalization was influenced by the work on 
continuous surfaces reported in Weibel (1992). 

In contrast to cartographic generalization, model generalization involves no artistic, 
intuitive components. Instead, it encompasses probabilistic or even deterministic 
processes. For the same reasons, engineering-oriented researchers and computer scien- 
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tists, who frequently had problems understanding the need for artistic compromises in 
cartographic generalization, should feel more comfortable with model generalization. 
Thus, one would naturally expect that it should be easier to tackle than its graphics- 
oriented counterpart. On the other hand, a limiting factor at this time is perhaps that the 
requirements of model generalization for relevant GIs applications are not yet defined. 
As in cartographic generalization, different methods will have to be developed for dif- 
ferent applications of model generalization. It cannot be expected that 'one size fits all' 
methods can be devised. It is, however, possible to state some general requirements that 
should be met by all procedures for model generalization. 

The method should produce predictable and repeatable results. 
The deviations of the resulting model from the original model should be minimized (or 
at least never exceed a given maximum tolerance). 
The reduction of the data volume should be maximized. 
The integrity (e.g. the topological consistency) of the objects modelled in the original 
model should not be violated. 
From a user point of view, the procedure should be controllable by as few parameters 
as possible, and the relation between the input parameters and the result of model 
generalization should be obvious. 
Finally, efficiency is a further requirement, as model generalization is often aiming at 
data reduction with the objective of speeding up computations. 

Taking the well-known line filtering algorithm described by Douglas and Peucker (1973) 
as an example, one can observe that it meets the above requirements only partially. It 
produces predictable and repeatable results, and achieves major reduction factors at little 
cost in terms of deviations from the original line (McMaster, 1986). Also, it is efficient 
and can be controlled by a single tolerance value that is easily mappable to the result. The 
problem, however, is that this algorithm can create self-intersecting lines because no 
mechanism is included for checking against topological inconsistencies (Miiller, 1990). 
Furthermore, overlaps might result between different lines as a result of filtering each line 
individually. 

The problem with many existing methods for the generalization of spatial data is that 
they have been developed with no suficiently focused objective in mind. Although they 
achieve generalization-like behaviour, it is not always clear whether they can be used for 
model generalization because they may not fulfil the above requirements. Likewise, many 
of these algorithms are also not suited for cartographic generalization because they do 
not pay attention to cartographic principles. The example of the method developed by 
Douglas and Peucker (1973) is but one of a longer list of possible examples. Nevertheless, 
these algorithms are used for purposes for which they were never really intended, such as 
the production of multi-scale databases. It is obvious that future methods for model 
generalization should adhere more strictly to rigorous criteria that can be used to evaluate 
their performance, such as the generic requirements outlined above, but also more spe- 
cific ones. 

5.3 Knowledge acquisition 

Today, much of the research in cartographic generalization is generally leading in the 
direction of knowledge-based systems. As a rule, knowledge-based systems derive their 
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power from the knowledge they contain, and not from the particular formalisms and 
inference schemes they employ. Thus, the formalization of generalization knowledge, 
known as knowledge acquisition (KA), has become an issue of major importance 
(Chapter 1). In the computer-science literature (e.g. McGraw and Harbison-Briggs, 
1989), the classical methods for acquiring knowledge in the knowledge engineering 
(KE) process include interviewing experts, learning by being told, and learning by obser- 
vation. Several supporting techniques have been developed to make knowledge engineer- 
ing more effective: structured interviews, repertory grids, critical incidents, artificial 
problems, as well as querying by means of expert system shells. Unlike the primary 
application domains of today's knowledge-based systems, medical diagnosis, systems 
configuration, taxonomy, or fault diagnosis, which are based on complex, yet rather 
well-documented knowledge, generalization involves a great deal of intuition. What 
makes cartographic knowledge most special, however, is that it is essentially encoded 
graphically and, thus, hard to describe in words. One rather widely used typology dis- 
tinguishes between geometric, structural, and procedural knowledge components that are 
involved in generalization (Chapter 1). Given the specific situation of generalization, it 
seems natural that the conventional knowledge engineering methods must be refined and 
extended. 

Several different methods are potentially useful for knowledge acquisition in map 
generalization: cqnventional knowledge engineering techniques, analysis of text docu- 
ments, comparison of map series (reverse engineering), machine learning, artificial neural 
networks, and interactive systems (amplified intelligence). Most previous efforts in 
knowledge acquisition (e.g. Nickerson, 1991; Mulawa, 1993) have concentrated on the 
use of conventional KE techniques; that is, they were mainly based on expert interviews. 
Experience with alternative methods is very limited because the research community is 
only beginning to tap these new possibilities. On the other hand, it is important to assess 
the potential of the different approaches and find out about possible strengths and 
limitations soon. Given the complexity of the generalization process, a combination of 
KA techniques seems most useful and one would naturally like to direct research efforts 
to the most promising alternatives. 

The author's group are currently conducting studies with several techniques (reverse 
engineering, amplified intelligence, machine learning, and neural networks) in order to 
gain some initial experience and structure future research. Based on preliminary results of 
these studies and on theoretical considerations, the potential of the different alternatives 
was estimated. A detailed discussion of this effort is given in Weibel (1993). Here, the 
discussion will concentrate on a summary of the specific characteristics as well as pro- 
blems that remain to be resolved by future research (see Table 5.1). 

As mentioned above, conventional KE methods, in particular interviewing techniques, 
have been used in previous projects. They seem particularly useful for an initial structur- 
ing of the problem domain, but also in the long term as a background and complemen- 
tary strategy for other KA methods. The advantage is that the knowledge is acquired at 
the source, and thus includes the experts' explanations. However, a fundamental problem 
encountered in the course of a previous project (Weibel, 1992) is that, because of the 
holistic nature of the cartographic design process, cartographers find it hard to break 
down a workflow into distinct actions. Also, they are often reluctant to contribute to 
technology which they consider is performing clearly below their standards. Similar 
communication-related problems also exist in knowledge engineering in other fields. 
Considerable research has thus been carried out on developing communication strategies 
and interviewing techniques that should help to cope with these problems (McGraw and 



Table 5.1 Synopsis of different methodr for knowledge acquisition 

Time-frame and Potential use for KA 
Method complexity in generalization 

Conventional KE (interviews, particularly useful in establish initial framework 
observation of experts at work) initial phase, but also background for other 

long-term KA methods 
flow complexity projects in large 
partial automation possible institutions (NMAs) 

Specific characteristics and problems 

knowledge acquired at the source, 
includes explanation 
needs availability of experts (institutional 
framework) 
experts may be unable or unwilling to 
explain actions 

Analysis of text 
documents (guidelines) 

Analysis of maps: 
reverse engineering 

Machine learning (ML) 

only useful during initial phase initial knowledge base (procedural descriptions often vague 
low complexity knowledge) difficult aspects rarely explained in written 
little automation possible extensive potential knowledge source form 

conflicts between rules 
possible 

only useful during initial phase formaliz rules for selection (e.g. original generalization idea may be 
f low complexity Radical Law) obscured by later updates 
little automation possible procedural knowledge: semiformal final map may not reveal intermediate 

descriptions rather than formal rules operations 
difficult to determine sequence and rela- 
tions of operators 

useful in the mid- to long-term range interpretation of large numbers of no previous experience with ML in carto- 
high complexity facts extracted by reverse engineering graphy 
highly automated or interactive systems so far, lack of suitable data generated by 

refinement of initial rules previous investigations 
debugging of knowledge necessary 



Neural networks (NNs) 

Interaction systems 
(amplified intelligence) 

useful in the mid- to long-term range not very useful for KA due 
high complexity to lack of explanation 
highly automated replacement of algorithmic 

generalization operators by more 
holistic approaches 
classification (structure recognition) 

useful over the entire time-frame evaluation of genealization operators 
medium to high complexity and support facilities (immediate 
automated, but needs user feedback possible) 
human intervention KA through interaction logging 

integration and testing of knowledge 
acquired from different sources 

very limited experience with NN in carto- 
graphy 
which network topologies work best? 
input representation? 
choice of training set 

needs involvement of human experts 
'packaging' of operators, interaction 
mechanisms? 
limited experience with interaction log- 
ging 
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Harbison-Briggs, 1989). Another problem that is quite typical of cartography is that 
skilled cartographers (i.e. potential experts) usually work at large institutions. It is thus 
often difficult, if not impossible, for outsiders to conduct expert interviews - an institu- 
tional framework is needed. Therefore, conventional KE methods are often unattractive 
for academic researchers who traditionally have carried out most of the research in 
generalization. 

The analysis of text documents, particularly of compilation and production guidelines 
in use at mapping institutions, represents another approach that needs little technological 
investment. Guidelines provide an extensive potential source of semi-formal knowledge, 
especially of procedural knowledge. The analysis of such documents thus seems particu- 
larly useful during the initial phase of knowledge base development. However, the 
descriptions contained in production guidelines are usually rather vague, incomplete, 
and particularly fall short of explaining the difficult aspects of cartographic operations 
(Chapter 17). In some cases, they are even kept mainly in graphical form, showing 
illustrations of favourable and unfavourable examples (e.g. SSC, 1987). Another problem 
is that since guidelines are usually written in a 'sequential' fashion, conflicts between 
different rules may arise. 

As an alternative to analysing text documents, graphical documents - maps - may 
be studied. This approach attempts to extract generalization knowledge by comparison of 
the modifications that occur to the individual map elements across the scales of a map 
series. The strategy has also been dubbed 'reverse engineering', since the process starts 
with the end-product, and attempts to identify the operations that led to this result. In 
recent years, high expectations have been raised with respect to this strategy (e.g. 
Buttenfield et al., 1991; Muller 1991b). However, one must be aware of the fact that 
the final map is usually the product of a series of complex and convoluted design opera- 
tions. Thus, apart from technical problems involved with measuring and tracing general- 
ization operators, it is frequently impossible to identify reliably the operations that led to 
the end-product, and determine their sequence and relation. Also, the original general- 
ization idea may be further obscured by later updates if map sheets of a regular map 
series are used. Thus, in order to portray generalization in an unbiased fashion, the maps 
used in a study currently conducted in the author's own group are 'new' maps, having 
been produced specifically for the purpose of this experiment (Parantainen, 1995). Given 
the difficulties with this method, it appears that while reverse engineering has been cap- 
able of extracting quantitative relations such as the Radical Law developed by Topfer 
(1974), the usefulness of this method with respect to formalizing procedural knowledge 
must be seen in a more conservative fashion (Parantainen, 1995). The output of reverse 
engineering should be considered as semi-formal descriptions rather than formal rules. 
These descriptions, in turn, may then support the development of more accurate knowl- 
edge using other KA techniques. Also, the analysis of maps can often provide a commu- 
nication link between the knowledge engineer and the expert cartographer. 

Machine learning (ML), in the context of knowledge acquisition for generalization, 
mainly has its merit as an auxiliary technique. Given the prospect of large numbers of 
facts to be compiled by reverse engineering, or audit trails produced by interactive sys- 
tems (see below) in the future, some consideration needs to be given to the way in which 
these observed but unstructured facts are turned into rules. For humans, it is very quickly 
impossible to perceive patterns in datasets exceeding the size of just a few elements. ML 
methods (induction, deduction, concept-based learning, statistical clustering, or neural 
networks) are capable of generating decision trees or prototype rules that facilitate the 
formulation of an initial rule set from observed facts (McDonald, 1989). ML can poten- 
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tially also unveil unknown or unexpected relations and rules. However, ML cannot find 
f any rules that are not 'captured' by the original attributes contained in the facts database. 
j Finally, ML may be used to refine initial rule sets. ML techniques (mainly based on 

induction) are implemented in several commercial expert system shells as well as in public 
domain packages. The major impediment to the use of ML thus far has been the lack of 
suitable data to experiment with the application of ML to cartographic problems. For 
good results, ML techniques need a large number of reliable facts as input. Also, the 
decision trees or rules generated by ML need to be tested and possibly debugged, since 
incorrect or conflicting rules may be inferred. 

Neural networks (NNs) or more correctly, artificial neural networks, are a specific form 
of machine learning (Maren et al., 1990). NNs are capable of learning based on training 
from given sample situations, but it is hard to actually deduct formal knowledge (i.e. 
rules, decision trees, etc.) from them. With respect to knowledge acquisition, they are thus 
not very useful. Nevertheless, neural networks are of interest to generalization due to 
their great ability in classification and template matching. NNs may be useful for several 
generalization tasks, as is discussed by Werschlein and Weibel(1994). The most straight- 
forward application is the use of NNs for the classification of map feature attributes (i.e. 
thematic generalization). Another potential use of NNs is in the context of structure 
recognition, where they could replace statistical methods for the classification of 
'structure signatures' (Buttenfield, 1991) with a potentially more robust approach. A 
third area to which NNs might be applicable in generalization is the evaluation of alter- 
native generalization solutions produced by different methods and/or different para- 
meters (see the next section). Perhaps the most interesting NN application of all, 
however, is in replacing current algorithmic generalization operators with more holistic 
solutions. For instance, algorithmic operators for line generalization are split up into 
subprocesses such as simplification, smoothing, and enhancement, while a suitable car- 
icature can often only be obtained through a combination of processes. NNs may poten- 
tially overcome this discretization. 

As with machine learning, however, practically no previous experience exists with the 
use of NNs in cartography. Initial work with NNs in line generalization performed by 
Werschlein and Weibel (1994) suggests that the performance of NNs primarily depends 
on three points: the scheme that is used to represent the input data, the topology of the 
network, and the choice of samples used to train the network. Among these factors, the 
choice of input representation is of overriding importance. The representation of the 
input data essentially dictates what patterns can be inferred by the neural network. In 
raster-based generalization (e.g. of land use maps), input representations can be restricted 
to simple raster data structures, since generalization is basically performed by reclassifi- 
cation of cells, while geometry does not change. In vector mode generalization, however, 
input representations cannot be restricted to the basic data structures used by algorithmic 
methods (e.g. simple strings of x/y  coordinates). Basic representations must be enriched 
by additional transformations (e.g. line curvature) in order for the neural network to be 
able to infer reliably shape modifications between input and output. Werschlein and 
Weibel (1994) provide a discussion of possible input representations for cartographic 
lines. 

The last alternative for knowledge acquisition is the use of interactive generalization 
systems, also termed amplified intelligence (Weibel, 1991). The basic idea is that inter- 
active systems could be equipped with a facility for logging the interactions of expert 
users with the system. The analysis of the resulting interaction logs (also called audit 
trails) is then expected to lead to the formulation of rules. This author proposed this 
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approach several years ago (Weibel, 1989, 1991); other researchers are now pursuing 
similar strategies (e.g. McMaster and Mark, 1991). The concept is appealing, even 
more so since the same set-up could also be used for testing of existing and new general- 
ization operators and support facilities, as well as the integration and testing of knowl- 
edge that is acquired through different methods. On the other hand, systems that carry 
some potential to act as a platform for knowledge acquisition are only beginning to 
emerge (e.g. Lee, 1993), and a number of difficult problems still need to be resolved 
before this approach can be exploited successfully. Formats for interaction logs (what 
actions are being logged, when, and how?) and mechanisms for editing these logs must be 
developed. The 'packaging' of operators - that is, the level at which the user can control 
them - will significantly influence the interaction logs that can be produced. 
Furthermore, the characteristics of map features must be determined and logged as 
well (e.g. line sinuosity, relation to neighbouring features, etc.), in order to identify 
why generalization operators have been applied and what triggered these actions. Once 
interactive systems are being used for interaction logging experiments, they are bound to 
generate a vast number of facts describing the flow of operations during generalization. It 
will therefore be necessary to use machine learning tools in an attempt to interpret these 
unstructured facts. One expects, however, that the automated interpretation of interac- 
tion logs alone will not suffice; further i n t e ~ e w s  and session observations (possibly by 
video taping) of the experts at work are needed as complementary techniques. Finally, it 
should be mentioned that audit trails can have more direct uses besides knowledge 
acquisition, which can also be beneficial in a production environment. The most immedi- 
ate use of interaction logs can be seen in the creation of macros for action replay. Audit 
trails may also be used for 'generalization by example': parameters are interactively 
trained and logged for one or several smaller but representative regions of the original 
map, and subsequently applied to the entire map automatically. 

In conclusion of this section, one can observe that a variety of methods can be explored 
for KA in generalization that have the potential of complementing each other in terms of 
the types of knowledge that may be formalized, the technological efforts involved, the 
degree to which experts are involved in the KA process, and their current maturity. 
Conventional KE techniques and analysis of guidelines seem most valuable in the context 
of research conducted by or in close collaboration with mapping agencies. The position of 
reverse engineering should be seen conservatively; its best use may be as a means of 
bringing together researchers from the academic sector and practising cartographers. 
Machine learning and neural networks represent novel techniques in cartography that 
should be studied extensively by academic research. Interactive systems offer the best 
potential for the integration and testing of knowledge from various sources and should 
therefore be pursued even if future research shows that their value for knowledge acquisi- 
tion is limited. 

5.4 Evaluation of generalization alternatives 

While some research was conducted in the late 1970s and early 1980s to develop geo- 
metric measures for an assessment of line simplification (e.g. McMaster, 1986), the devel- 
opment of methods for evaluating generalization results has received very little attention 
since then. It is only now being realized that such evaluation methods are an important 
component and even a prerequisite of knowledge acquisition. Evaluation is needed at 
three different stages of the generalization process. 
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A priori evaluation is necessary prior to the actual knowledge acquisition process. It 

[ includes the selection of suitable study areas and test datasets, and helps in assessing ' the performance of potential expert cartographers as well as distinguishing examples 

/ of good solutions from poor work which should not be considered for knowledge 
formalization. The latter aspect is particularly crucial for the selection of suitable 
training samples for NN applications. Often, some of the input materials may still 
be in analogue form and may need to be digitized first. 
A posteriori evaluation is needed to compare and rank different generalization alter- 
natives: for instance, those that are generated by different generalization operators or 
sequences. It also involves the assessment of existing algorithms and techniques for 
generalization (both generalization operators and support facilities). In principle, the 
methods that can be used for a posteriori evaluation are the same as those for a priori 
evaluation. 
Ad hoc evaluation is required to control the automated generalization process as a 
means of continuous evaluation. It includes the task of conflict resolution between 
contradicting rules at run time and thus forms part of the meta-knowledge of a 
knowledge-based system. Some approaches such as the so-called genetic algorithms 
involve the automated generation of large sets of alternatives using different para- 
meters in order to find the best solution (Armstrong, 1993). Ad hoc evaluation is 
needed in this case to prune the solution space and to determine the optimal solution. 

The overall process of evaluation involves two tasks. First, specifications must be 
established of what defines a 'good' or 'acceptable' generalization for a given map. It 
is only against such requirements that a generalization result can be assessed. These 
specifications, of course, will depend on the constraints of the generalization process, 
such as the purpose and scale range of the given maps, and the quality of the input data. 
Apart from criteria relating to the quality of the graphic output, other factors such as 
efficiency, robustness, and ease of use are relevant when evaluating digital methods. As a 
second task of evaluation, the actual assessment must then attempt to determine the 
degree to which the specifications are met by a given result. 

The study of the traditional cartographic literature can provide a natural starting point 
for the development of methods for evaluating generalization alternatives. Many text- 
books and teaching notes (~.~. ' ssc ,  1987) make use of 'good' and 'poor' examples to 
explain particular concepts of generalization. An investigation of that literature can 
provide some initial hints for the development of specifications as well as methods for 
assessment. Further input can be gained by studying the quality assurance procedures 
currently in place at mapping agencies for manual production. And finally, a study of the 
literature on quality assurance and benchmarking in non-cartographic disciplines such as 
industrial or software engineering could perhaps furnish further insight about methods 
for the assessment of non-quantifiable processes. 

Since generalization involves highly intuitive components, it cannot be expected that 
any evaluation procedure can be purely objective. Definitely, there are criteria that can be 
assessed objectively such as violations of topological relations, but other aspects such as 
'overall clarity of the map image' are very hard to express rigorously. These objective and 
subjective components of generalization can be expressed by a number of quantitative 
and qualitative criteria. In general, quantitative measures relate to objective properties of 
generalization and design, while qualitative descriptions are used to capture subjective 
aspects. However, note that 'quantitative' and 'objective' are not synonymous: minimal 
dimensions, for instance, can be specified in a strictly quantitative way, but the actual 
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values used for a particular map are often left to specific subjective preferences. Likewise, 
qualitative descriptions of subjective components can also be made in a more quantitative 
fashion, for instance, by using a grading scheme and associated weighting factors. Both 
quantitative and qualitative criteria must first of all allow us to compare different gen- 
eralization alternatives (among themselves and/or against a solution that is considered 
optimal), and eventually make it possible to judge and rank different solutions consis- 
tently. The question is then how objective and subjective aspects of generalization are 
characterized in a meaningful way: at which stage of the evaluation and in which way 
should quantitative measures form the basis of a qualitative assessment? 

A project currently under way in the author's group is the development of a methodol- 
ogy for the evaluation of generalization alternatives (Ehrliholzer, 1995). This includes the 
definition of a prototype report format that integrates quantitative and qualitative cri- 
teria, as well as sets (or modules) of measures and qualitative aspects that are considered 
relevant for different types of generalization problems (depending on map purpose, 
scales, feature classes, and data types). The expectation is that, in a particular evaluation 
situation, a specific report format could be compiled from relevant modules, and the 
resulting values for the report items weighted according to the preferences defined for the 
project. 

Quantitative measures have the purpose of supporting the assessment by determining 
computationally to what degree design specifications are violated and/or how closely an 
'optimal' solution (e.g. a digitized template of a manually produced version) is matched. 
Possible measures include the following: 

Global measures. These may include the degree of generalization and whether it is 
constant over the entire map (measured by means of feature density and feature 
clustering), adherence to the Radical Law, and the ratio of foreground to background 
(b/w ratio). 
Geometrical measures. A first group of geometrical measures is needed to highlight 
cases where the minimal dimensions are violated (i.e. objects that are too small, objects 
that are too close, segments that are too short, etc.). A second group is required to 
determine the amount of distortion, that is, deviation from the shape of the representa- 
tion in the original map or in a map that is used as a reference (e.g. a manually 
produced map that is considered as a good solution). McMaster (1986) describes a 
number of such measures for linear objects. Similar measures need to be developed for 
point and area objects. Various measures are readily available for this purpose from 
the literature in the fields of computer vision as well as geography and cartography 
(e.g. Pavlidis, 1978; Austin, 1984, to name but two possible sources). 
Topological measures. The purpose of these measures is to identify violations of topo- 
logical relations that need to be maintained from the original map. These include the 
detection of self-intersections of lines as well as intersections among different lines, 
overlapping objects, and adjacency relations that are violated (e.g. a house moved to 
the other side of a road as a result of simplifying the road). 
Software-related measures. In order to measure the productivity gain that can be 
accomplished as a result of automation, several aspects of software performance 
must be assessed, including CPU time, person hours spent on a particular general- 
ization task, equipment hours and cost, entire duration of the project, and possible 
map update cycle. The person hours, to some degree, reflect the ease of use and the 
robustness of the generalization software. These aspects, along with other more 
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evasive software-related factors, such as work satisfaction, must be assessed further 
in the qualitative part of the evaluation procedure. 

The implementation of a rigorous procedure for qualitative evaluation is inherently 
more dificult to achieve than the formulation of quantitative measures. Apart from 
the study of the relevant literature mentioned above, a close collaboration with different 
experts is necessary to develop a suitable checklist and questionnaire that will eventually 
lead to a common form of assessment. Ideally, it should be possible to compare the 
evaluations of different generalization alternatives even if they are performed by different 
experts. 

The author believes that the format of a standardized questionnaire and checklist that 
asks the evaluating expert to give grades (e.g. 1 to 5) for a variety of assessment items is 
the most effective way to characterize rigorously and consistently subjective aspects of 
generalization, and also provides the most direct form of integration with quantitative 
measurements. In order to allow integration, qualitative questions must match the cate- 
gories of the quantitative assessment. For instance, as a counterpart of global quantita- 
tive measures, qualitative aspects on the global level, such as 'maintenance of the overall 
character of the original map', can be assessed. Similar questions can be formulated as 
counterparts of geometrical, topological, and software-related measures, where factors 
such as 'ease of dse' are largely subjective. 

Of course, in some cases, an expert will find it hard to assign a grade which can only 
reflect an average for a particular assessment question. It must be possible for him/her 
also to document specific problems, typical situations, or details that are handled parti- 
cularly well. A possible solution is the use of hypermedia techniques to implement an 
evaluation report, allowing integration of screen snapshots, annotations, and sketches as 
a means of illustrating specific points. The question is then also whether the assessment 
should be performed completely in the digital domain (e.g. by means of a visual overlay 
of scanned manual maps and digital solutions). Finally, it should be noted that the 
distinction of the effects of generalization from those of other cartographic processes 
may pose a serious problem. For instance, it may be that, in principle, the elements of a 
particular map have been generalized adequately, yet an inappropriate symbolization of 
the individual elements may negatively affect the clarity of the map (Baumgartner, 1990). 
In such a case, it may be very hard to determine what mistakes have contributed to the 
poor appearance of the resulting map. 

5.5 Conclusions 

It appears that research in generalization has entered a new stage. In contrast to earlier 
years, when research in generalization usually concentrated on the development of nar- 
row, special-purpose solutions, current research strategies are attempting to approach the 
overall problem in a more comprehensive way. Strategies such as amplified intelligence 
are pursued that can integrate existing methods to exploit their combined potential. 
Generalization is no longer viewed as a purely graphics-oriented process, but considera- 
tion is also given to reduction, reclassification, and filtering processes in the numerical 
domain, that is, to model generalization. Finally, attempts are being made to base gen- 
eralization on a better understanding of the processes that are involved, leading towards 
the development of knowledge-based approaches. 
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As is often the case when a new stage is reached in a research domain, there are more 
questions than answers. At this point, it is first of all important to ask the right questions, 
and develop a concept about where the answers could be found most probably. Based on 
the example of three issues that we have identified as crucial for progress of research - 
model generalization, knowledge acquisition, and the evaluation of generalization alter- 
natives - we have attempted to identify problems and potential solutions for research. 
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