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ABSTRACT
Horn, BK.P., 1982, Hill shading and the reflectance map. Geo-Processing, 2: 65—

Shaded overlays for maps pive the uscr an immediate appreciation for the surfoce topography
since they appeal to an important visual depth cue, A brief review of the history of manual
metheds is followed by a discussion of a number of methods that have been proposed for the
automatic generation of shaded overlays. These techniques are compared using the reflectance
map as a common representution for the dependence of tone or gray level on the orientation of
surface elements,

INTRODUCTION

Of the several ways of depicting surface form on maps, hili-shading has the most immediate
appeal and provides for quick comprehension of the topography. In this sense, hill-shading is
complementary i0 the use of contours, which provide accurate terrain elevations but require -
careful scrutiny if one is to ascertain the surface form. Shaded maps are most important whern the
interpreter’s time is limited, as in aviation, for uscrs that are not trained cartographers, and for
small scale maps, where contours degenerate into messy tangles of lines. |

Why then do we not sec more shaded maps? One reason is the expense of present manual
methods of production, which require skilled artists with good insight into cartography. Working
from existing contour maps, ridge and stream lines extracted from such maps, and at times aided
-also by aerial photography, they wield airbrushes, in what is a slow, tedious, and imprecise
operation. Different individuals called upon to create such images by manual methods will
inevitably produce different results because of the inherent subjective judgement. The resulting
differences in expression of the terrain characteristics of the same surface at the same scale provide
a particular problem for a map series, where adjoining sheets should match in terms of hill-shading
symbology. This justifies investigation of an objective system which makes the treaiment of all
terrain forms comparable and repeatable.

Attenipts at automation began with the notion that the gray levels used in the shading should
derive from a model of how light might be reflected from a surface. lgnoring shadowing and
mutual Humination effects, it seems clear that the reflected intensity will be a function of the Jocal
surface inclination. The choice of a method for calculaning the gray tcne based on the orientation
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of each surface element has however been the subject of occasionally bitter controversy for almost
two centuries. Much of the difficuity stems from a lack of a common representation that would
allow comparison of methods which appear at first glance to be incomparable,

The recently developed reficctance map constitutes such a common denominator, It isa
simple device developed originally for work in machine vision where one is intcrested in
calculating surface shape from the gray levels in an image. This is clearly just the inverse of the
problem of producing shaded pictures from a surface model. The reflectance map is a plot of
apparent brightness versus two variables, namely the slope of the surface element in the
west-to-east direction and the slope in the south-to-north direction. Producing a shaded overlay
for a map then is simply a matter of calculating these two slopes for each surface element and
Iooking up the appropriate gray level in the reflectance map (see Fig. 1). This is a very simple,
local computation that can be carricd out efficiently even on enormous databases. The resulting
gray levels can then be fed to a graphic output device that will produce a continuous tone or
halftone photographic transparency from the given stream of numbers.

What reflectance map is to be used? Careful comparison of more than a dozen proposed
shading methods shows that some of the simplest provide a good impression of the shape cf the
surface. These experiments also show that the most commonly used assumptions about surface
reflectance do not Jead to the best results, while simple monotonic functions of the surface slope in
the direction away from the assumied light source work admirably. What matters is the visual
impression, not theorctical tules [1]. One goal of this paper is a review of various hillshading
methods that have been proposed in the past. Much can be learned from these efforts when they
are evaluated in terms of the corresponding reflectance maps. '

Digital Gradient (p.9) Reflectance R Graphic
Terrain | 2, | Estimation | 3" | Calculation |, | Output
Model Processing

Figure 1; Block diagram of a system for the generation of relief shading. Thelgray-valuc is
calculated by applying the reflectance map to the gradient estimate obtained by
sampling neighboring points in the digital terrain model.

EARLY HISTORY OF HiLL-SHADING

Chiaroscuro, the techniqqe of using light and shade in pictorial representation of three -
dimensional shapes, has been used by artists for many centuries. Leonardo da Vinci put it to good
effect in his maps of Toscana, drawn in 1502 and 1503, that contained oblique shaded views of
relief forms illuminated from the left {1]. Woodcuts of the area around Zirich in Switzerland
drawn half a century later by Murer use shaded sideviews as well. Overhead views using relief
shading appear for the first time in maps cf the samc area drawn a century after that by Gygers,
but these then gave way to less desirable forms [1].
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The choice of the representation for relief forms depend to a great extent on the available
reproduction technology. Woodcuts and engraving methods lend themselves to linear forms,
where brightness of an area in the reproduction is controlled by the spacing and width of darkened
lines. Useful directional, textural effects can be generated by orienting these line fragments, or
hachures (Schraffuren), along lines of steepest descent. Crowding of such lines in steep areas may
have given rise to notions of "steeper implies darker”.

Lehmann proposed the first rigorous relationships [2],{3] between surface slopes and
quantities measurable on the printed map. In 1799, when his method (Boschungsschraffen) was
published anonymously, the techniques for measuring the surface accurately at a large enough
number of points did not exist. Resulis of this first method of illustrating shape are in some ways
analogous to those one nyight obtain by illuminating a model of the surface from above, an
arrangement that gives rise 1o images that are difficult to interpret.

Partly as a result of this, an aiternate form (Schaitenschraffen) evolved 4] —-[6]: in which the
line thickness is varied according to the orientation of the local surface patch with respect to a light
souirce, usually assumed to be near the top left of the map when it is oriented properly for viewing.
For maps with north at the top this corresponds to north-west. Surface patches sloping downward
in that direction are portrayed with a light tone, while those stoping upward in that direction get a
dark tone. Since flat areas have no lines of descent, they remain white, Aside from this defect, this
method produces an image similar to one obtained by obliguely illuminating a diffuscly reflecting
model of the surface. Having flat areas appear white makes maps produced by this method a litle
difficult 10 interpret. They are nevertheless superior to those made by the carlier method, as
evidenced for example by the "Dufourkarte” of Switzerland made between 1842 and 1864 using
this approach {1). These methods for portraving surface shape preceded the widespread use of
contours {7}, in pan because the latter require detailed surface measurements ﬂmt were not
available before the advent of photogrammetry.

While lithagraphy was invented by Alois Senefelder in 1796, it found little application in
cartogruphy wuniil around 1850. It permitted the production of multicolored maps, but more
importantly, led to the use of halftoncs, destined to ultimately replace lines as a means of
modulating the average reflectance in the printed map. W. H. Fox Talbot invented a
photomechanical halftone process in 1852, but commerical success came only years after the
" patenting of the halftone serecn by Frederick von Egloffstein in 1863. and the cxosshm screen of
William A. Leggo in 1869.

Having access to these new reproduction schemes, Wicchel [8] developed shading methods
(Schmbltchtschummﬂung) © rcphce the use of hachures as described above. His fundamental
paper, based in part on work by Burmester [9] on shaded pictures of regular surfaces, placed the
field of hill-shading on a sound foundation. Wicchel discovered the ervor regarding flat surfaces,
for example, and. developed a graphic method for determining the gray value from contour
interval and direction. Unfortunately, the means for controlled generation of halftones as a
function of surface orientation did not then exist and his work was ignored for a long time.
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HILL-SHADING IN THIS CENTURY

Two methods based on lnes, this time contours instead of lines of steepest descent, were
explored by Kitird Tanaka in the 1930s. His first method used the lines of intersection of the
terrain surface with uniformly spaced, parallel, inclined planes [10],[11]. Tanaka’s initiative gave
rise to considerable discussion [12]—[19], partly in the form of an acrimonious debate [20]—[23].
His other method was based on portrayal of a terraced model of the terrain [24]—[26], an approach
that had been used previously, unguided by his careful analysis [27]—{29]. While line-based
methods give rise to beautiful, easy to interpret maps, they cannot show the fine detail of surface
topography possible with halftones and must be based on smoothed, generalized information such
as contours. Thesc lines also tend to interfere with others used to portray planimetric information.

A shaded overlay can also be produced by photographing an appropriately illuminated scaled
model of the surface. If this model has a matte or diffuscly reflecting surface, a map overlay of
high quality will result provided attention is paid to the projection geometry, While this was an
approach taken early on [27], it really only became practical in the 1950's with the introduction of
milling machines that allow an operator to carve a model by tracing contours on an existing map
[30]--[37]. This is still an expcnsive, slow process however, in part because of the manual work
required to smooth out the resulting “terraced” model.

The Swiss school of cartography improved on carlier forms [28] —[30].[38].[39] and devcloped
shading to a fine art, producing numerous outstanding maps in this time {40]—[48]. Imhof argues
that automated methods, such as relief model photography, cannot produce results nearly as
impressive, since the cartographer cannot casily influence the process [11. The manual shading
method is however slow and expensive, and consequently has not been used except for small areas
and those of particular interest or military importance. One cannot expect, with significant areas
of the world still not mapped at large scales, and the rising cost of labor, that shaded overlays
produced this way will be used in many maps.

Yotli [49]—[57} saw the potential of the digital computer in dealing with this dilemma, ltis
possible to implement Wiechel's method based on obligue illumination of a diffuscly reflecting
surface if terrain clevations can Le read into a computer and suitable continuous tone output
devices arc available. Yocli was hampered by the lack of such devices at that time. Blachut and
Marsik tried to simplify the required calculations to the point where a computer might not even be
required [581[59]. Peucker helped popularize the whole idea of computer-based cartography
~ [191]60)—[62], and found a piecewise linear approximation to the equation for the brightness of a
diffuse reflector that works well [61]. Many other interesting reports appeared during this time on
thé subject of hill-shading, 100 numcrous to mention individually [63]—[70].

. Brassel [71]—[74] took Imhof's admonitions seriously and tried to implement as much as had
been formalized of the "Swiss manner”. With the output devices available to him at that time it
was not easy 1o judge whether the added complexity was worth the effort, All of these computer
based methods require detailed digital terrain models. The storage capacity and techniques for
handling this kind of information now exist [32},[75]—[81). as do the photographic output devices
needed. There has been significant progress, 100, in the antomatic generation of digital terrain
models directly fron: aerial photographs [81]1—[87], partly as a byproduct of work on orthophoto
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generation [88]—[91]. More compact and appropriate representations for these terrain models are
under investigation [92]—[95], as are alternate methods for relief protrayal such as block diagrams
[96}—[102]. ' '

Considerable progress has been made recently in the computer graphics area in the portrayzl
of regular objects with simple surfuces [103]—[116]. Early models for the reflection of light from
matte surfaces [117]—[120] are being elaborated, including some for the material on the lunar
surface [121]1—130]. 1In this context, work on models of the microstructure of surfaces is relevant
{131]1—-[1361. In a recent effort in the machine vision area, a method was developed for portraying
the dependence of brightness on surface orientation using the so-called reflectance map
{137]1—{141}. The reflectance map can be determined if the detailed geometric dependence of
reflection from the surface [142],[143] and the distribution of light sources are known,
Alternatively, it can be found empirically, or derived directly by analyzing the interaction of light
rays with the surface microstructure,

As a result of the development of the reflectance map, the availability of detatled digital
terrain data, small computers able to perform the simple calculations required, and geometrically
accurate gray-level output devices, we may say that automatic hill-shading has come of age.

DIGITAL TERRAIN MODELS

For many applications of cartographic data it is useful to have machine-readable surface
representations. Such terrain models are used for example in the design of roads and in order to
determine the region irradiated by a radio frequency antenna. Initially, digital terrain models were
ecnerated manually by interpolation from existing contour maps. This is a tedious, error-prone
process producing a digitized version of the surface represented by the contours, which inturn is a
smoothed, gencralized version of the real surface.

‘The contour information on topographic maps is produced by manual scanning of stereo pairs
of aerial photographs. Today, fortunately, stereo-comparators often come equipped with
coordinate readouts that allow the extraction of information nceded for the generation of digital
terrain models [144]. Conveniently taken during orthophoto generation [88]—[91], the data tends
to be accurate and dewiled. Even more exciting is the prospect for machines that achieve stereo
fusion without human help {81]—[87], since they will lead 10 the automatic production of digital
terrain models. In the past such machines had difficulties dealing with uniform surfaces such as
lakes, featureless surfaces, large slopes, and depth discontinuities, as well as broken surfaces, such
as forest ¢anopies. This is apparently still true when aerial photographs are used with disparities
large enough to ensure high accuracy.

Various representations can be chosen for the surface elevation information.. Series
expansion, a weighted sum of mathematical functions such as polynomials, Gaussian hills or
periodic functions may be used. These tend to be expensive to evaluate however and not accurate
in approximating ‘surfaces that have slope discontinuities. This is important for many types of
terrain, at all but the largest scales. Perhaps the simplest surface representation is an array of
elevations, {zij}* based on a fixed grid, usually square.’ Determining the height at a particular
point is simple and the interchange of terrain models between users is easy since the format is so
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trivial.  One disadvantage of this kind of surface representation is the high redundancy in arcas
where the surface is relatively smooth. The illustrations in this paper are based on digital terrain
models consisting of arrays of elevation values. '

Methods that achieve considerable data compression by covering the surface with pancls
stretched between specially chosen points have been developed [92]—-[95]. These exploit the fact
_that real geographical surfaces are not arbitrary sets of elevations but have definite structure and
regularity. Such representations may ultimately replace the simpler, more voluminous ones, if
uscrs can be persuaded to accept the greater programming complexities involved.

Digital terrain models may also be referred to as digital elevation models if they contain no
information other than the elevation values.

THE REFLECTANCE MAP

The human visual system has a remarkable ability to determine the distance 1o objects vicwed,
as well as their shape, using a variety of depth cues. One such cue is shading, the dependence of
apparent brightness of a surface clement on its orientation with respect to the light source(s) and
the viewer. Without this particular depth cue we would be hard pressed to interpret pictures of
smooth, opaque objects stich as people, sinec other cues like stereo disparity and mation paratlax
are absent in a flat, still photograph. [t can be shown that shading contains cnough informatien to
allow the obscerver to recover the shape. In fact, a computer program has been developed that can
do this using a single digitized image [137].

Such work in the arca of machine vision hus led to a need to model the image-forming process
more carefully [138]. The input to the visual sensing system is image irradiance, which is
proportional 1o scene radiance (here loosely called apparent brightness) [140}. Scence radiance in
turn can be related to the underlying peometric dependence of reflectance of the surface material
and the distribution of light sources [142}]143). Here we concentrate on the dependence of scene
radiance on the orientation of the surfuce element. Shaded overlays for maps are interpreted by
the viewer using the same mechanism normally employed 1o determine the shape of
three-diniensional suriaces from the shading found in their images. Thus shaded overlays shouid
be produced in a way that emulates the image-fonning process, one in which brightness depends
on surfuce orientation. This is why the reflectance map, which capturés this dependence, is useful
in this endeavor. .

Consider a surface z(x, y) viewed from a great distance above (see Fig. 2). Let the x-axis
point to the east, the y~axis north and the z-axis straight up. The oriemation of a surface element
can be specified simply by giving its slope p in the x (west-to-east) direction and its slope ¢ in the y
(south-10-noith) dircction. The slopes p and ¢ are the components of the gradient vector, (p, g).
The apparcent brightness of a surface element R(p, g) depends on its orientation, or equivalently,
the local gradient. It is convenient to illustrate this dependence by plotting contours of constant
apparent brightness on a graph with axes p and ¢. This reflectance map [138] provides a graphic
illustration of the dependence of apparent brightness on surface orientation. The pg-plane, in
which the reflectance map is drawn, is called the gradient space, because each point in it
corresponds to a particular gradient.
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Figure 2: Coordinate system and viewing geometry. The viewer is actually at a great distance
above the terrain so that the projection is orthographic.

Surface orientation has two degrees of freedom. We have chosen here to specify the
orientation of a surface element by the two components of the grudient. Another useful way of
specifying surface orientation is to find the intersection of the surface normal with the unit sphere.
‘Each point on the surface of this Gaussian sphere again corresponds uniquely to a particular
surface oricntation. If the terrain is single-valued, with no overhangs, all surface normals will point
more or less upwards and pierce the Gaussian sphere in a hemisphere lying above an eqiator
corresponding 1o the horizontal planc. Gradient space happens to be the projection of this
hemisphere from the center of the sphere onto a plane tangent at the upper pole.

A White we will not use this representation in the calculation of relief shading, it is helpful in
understanding previous attempts at graphical portrayal of the dependence of apparent brightness
on surface orientation. The first such mcthod was developed by Wiechel more than a century ago
I8]. His brilliant analysis appears to have been largely ignored partly because it depended on
mathematical manipulations that may have been inaccessible to many of the intended users. Later,
Kitird Tanaka invented another method showing the variation of apparent brightness with surface
gradient [10}.[111]24}.125]. This second precursor of the reflectance map also appears to have

found liwe following.
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POSITION DEPENDENT EFFECTS

Since the reflectance map gives apparent brightness as a function of local surface gradient
only, it does not take into account cffects dependent on the position of the surface clement. One
such effeet is ilumination of one surfuce clement by another. Fortunately this mutual illumination
effect is small unless surface reflectance is quite high [138]. It is not known whether mutual
illumination effccts aid or hinder the perception of surface shape. They are difficult to calculate
- and so have not been emulated in work on hill-shading.

Another position dependent effect on apparent brightness is the blocking of light by one
portion of the surface before it reaches another. Cast shiadows can be caléulatcd by determining
which surface elements are not visible from the point of view of the fight source [139]). Shadows
cast by one complicated shape on another are hard to interpret however and apparently detract
from the visual quality of shaded overlays [1}.[351.[36]. They are thus rarely included.

Scattering of light by air molecules and aerosol particles changes the apparent brightness of a
surface element viewed through the atmosphere. The brightness is shilted towards a background
value equal to the brightness of an infinitely thick layer of air. The difference between the
brightness and the background value decreases with the thickness of the gaseous layer through
which the surface is viewed [145]). The resulting reduction in contrast as a function of distance is
referred to as aerial perspective and can be a useful depth cue, although there is no general
agreement that it aids the perception of surface shape. 1t has been used at times by map-makers
and can be modeled easily [1][711[731174]. The effect has not been added to any of the
hill-shading schemes presented hete in order to simplify comparisons.

WHERE DO REFLECTANCE MAPS COME FROM?

A reflectance map may be based on experimental data. One can mount a sample of the
surface in question on a goniometer stage and measure its apparent brightness from a fixed
viewpoint under fixed lighting conditions while varying its orientation. Instead, one can take a
_picture of a test object of known shape and calculate the orientation of the corresponding surface
clement for each point in the uimage. The reflectance map is then obtained by reading off the
measurcd brightness there.

Alternatively, one may use even more detailed information about light reflection from the
surface. The bidirectional reflectance distribution function (BRDF) describes how bright a surface
will appear viewed from one specificd direction when illuminated from another specified direction
[142],[143]. By integrating over the given light source distribution one can calculate the reflectance
map from this information [140]. Crudcly speaking, the reflectance map is like a "convolution" of
the BRDF and the source-radiance distribution.

Most commonly, reflectance maps are based on phenomenological models, rather than
physical reality. The so called Lambertian surface, or perfect diffuser, for example, has the
property that it appecars equally bright from all viewing dircctions. It also reflects all light,
absorbing none. It turns out that these two constraints are sufficient to determine uniquely the
BRDF of such a surface, and from it the reflectance map, provided the positions of the light
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sources- are also given. Some reflectance maps are based on mathematical models of the
interaction of light with the surface. Such models tend (o be either too complex to allow analytic
solution or 100 simple 1o represent real surfaces effectively. Nevertheless some have come quite
close 10 predicting the observed behavior of particular surfaces {134} —{136].

Here, new reflectance maps will be determined, based on proposed methods for producing
shaded overlays for maps. Their derivation will not depend on an understanding of the
image-formation process or the physics of light reflection. Instead, they will require an analysis of
how the: brightness of a point in the overlay depends on the gradient of the underlying
geographical surface. : _ _ .

Which reflectance map should be used? The answer to this question must depend on the
quality of the impression a viewer gets of the shape of the surface portrayed. Various methods for
producing shaded overlays can be compared by evaluating sample products and classified
according to the corresponding reflectance maps. It will become apparent that in this way general
conclusions can be drawn about a new method just by inspecting its reflectance map.

NORMALIZATION OF GRAY TONE

A picture made by applying varying amounts of light absorbing substances, such as ink, to an
opaque, diffusely reflecting material like paper, has a limited dynamic range. Reflectance is
limited at the low end by the properties of the ink and at the high end by the paper, which will at
~ most reflect all the light incident upon it, unless it fluoresces. The diffuse reflectance is thus always
less than or equal to one. Similarly, if absorbing substances are used on a {ransparent substrate, a
limit applies, since transparency cannot be Jarger than one.

The problem of fitiing a given image into the available dynamic range is fundamental to all
methods of reproduction. A normalization is applied so that the maximum apparent brightness to
be reproduced is represented by a reflectance of one (or whatever the maximum is for the paper
being used). This scaling will have to be applied whenever relief shading is based on models of
image-formation by light reflected from the terrain surface.

GRADIENT ESTIMATION

The apparent brightness of a surface element depends on its orientation with respect to the
viewer and the light source. The orientation of the surface element is described fully by a surface
ﬁormal, or equivalently by the gradient. The components of the gradient are the slopes p (in the
west-to-east direction) and ¢ (in the south-to-north direction). These slopes have to be estimated
from the array of terrain elevations. It is convenient to use a short-hand here for elevations in the
ncighborhood of a particular point (see Fig.3). In the context of a single point at discrete
coordinate (i, ), we will denote the clevation at that point by z . while elevations of the adjacent
grid points to the west and east will be called z_ and z,  respectively. Similarly, elevations at the
points to the south and north will be denoted z _and z ,.
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Figure 3; Short-hand notation for clevations of ncigh‘boring points.

The simplest estimates for the slope p might be
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where Ax is the grid interval in the west-to-east direction, expressed in the same units as the terrain
elevations. These estimates are biased, actually estimating the slope half a grid interval 10 the right
and left of the central point, respectively. Their average however, the central difference, is
unbiased, ' C

z, — 2z
Pe =5 | )]
Numerical analysis [146)—[149] teaches us that for certain classes of surfaces an even better
estimate is obtained using a weighted average of three such central differences,
(z,, + 2z, + z, )— (., + 2z_O +z_ )
Pw= 8 Ax ‘ &)

Symmetrically, one can estimate the south-to-north slope,

G, +2z2 +z2)—(_+2z_+z) :
g, = ++ o+ +8Ay+ 0 (@)

These expressions produce excellent estimates for the components of the gradient of the central
point. The results depend on elevations in a 3 X 3 neighborhood, with individual elevation valies
weighted less than they are in the simpler expression for the central difference. This has the
advantage that local errors in terrain elevation 1end not to contribute as heavily to error in slope.
At the same time, more calculations are required and three rows of the digital terrain model have
10 be available at one time. '

Care has to be taken 1o avoid corruption of the slope estimates by quantization noise in the
elevation values. Numerical problems due to the division of small integers may result when a
terrain model is too finely interpolated, with limited vertical resolution. If it is necessary to
generate many pixels in the output, it is better to interpolate the gray values produced by the
shading algorithm.
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GRADIENT SMOOTHING EFFECTS

More complicated slope cstimators than the ones described tend to introduce a smoothing
effect, as can be seen by applying them near points of discontinuity in slope. To illustrate this
more clearly, consider two horizontal smoothing operations H+ and H— that modify the terrain
model as follows,

z +z z +z
H+: z'°°:=—99—2——+—° and  H-: 7 = °2—°-g. 5

It can now be seen that the central difference slope estimate p, on- the original terrain model,
equals the biased estimate p,, calculated from the terrain model smoothed using H—, or,
_equivalently, the biased estimate p_, calculated from the terrain model smoothed using H+. Next
consider two vertical smoothing operation V+ and V— in which the terrain model is modified as
follows

: 2tz z_ +z
Vs 2 o= 5 2 and V-: 7 :=-—°—-—2——°g. )

]

'The complicated slope estimate p,, can be shown to produce the same result us the first difference

p . calculated from a terrain model smoothed by applying H—, V+, and V—. Similarly the slope
estimate ¢,,, equals ¢, calculated from a terrain model smoothed by applying V—, H+, and H—
(actuatly, since all of these operaticns are linear, their order can be arbitrarily rearranged). Perhaps
any "smoothing" desired should be done as a separate cditing operation, combined with the
removal of "glitches” from the digital elevation model, rather than as part of the slope cstimation.
Also for terrain models of relatively limited size this smoothing may be undesirable. Some other
slope estimators are simplér and introduce less smoothing. For example one can combine two
biased estimates of the slope to get,

(z,+z )—(,6 +z ) (z,, +z )—(z +2z )
py, = - +02Ax o+ 00 and qy = e 0+2AV £0 20 )

Here the average gradient in the top-right quadrant, (z__, z,,, 2}, rather than at the central
oc o+

z+0’ 447
point is being estimated, using elevations in a 2 X 2 neighborhood only. For the graphic
illustrations presented here, the expressions for py, and ¢y, were used to estimate the gradient.

At this time some terrain models are still produced by hand and have rather limited size.
Rather than smoothing the terrain, one may wish to increase apparent resolution by some means.
This can be done quite effectively by combining biased slope estimates (see Fig. 4). For every
point in the terrain model, four gray values are produced corresponding to the four quadrants
around it. Each is based on a different combination of the slope estimates (p_ or p,) and (¢_ or ¢,)
as appropriate for that quadrant. No miracles should be anticipated; this method cannot create
information where there is none, but it can stretch what is available to its limits.

More complicated slope estimators than those discussed here do not seemn called for, since the
simple oncs shown produce cxcellent results. Furthermore, cstimators having wider support, while
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Figure 4: Combinations of biased slope estimates can be used to plot four times as many
gray-tones as there are elevation values in the terrain model. Vhe limited amount of
data in a small terrain model may be stretched this way to produce reasonably detailed
hill-shading output. ’

known to be more accurate for certain classes of functions such as polynomials, may perform
worse on typical terrain with its discontinuitics in slope along ridge and stream lines.

It has been cartographic practice to assume a light source in the northwest at a 45° elevation
above the horizon. It is helpful in this case o introduce a rotated coordinate system as described in
Appendix A. A

EXAGGERATION OF TERRAIN ELEVATIONS

Compared to objects of a size that allow for casy manipulation by a human observer, the
surface of the earth is in many places, though not everywhere, rather flat. The range of slopes is
often so small as to cause disappointment with correctly proportioned models, so that height is
often exaggerated in physical models.. Similarly, shading based on models of light reflection from
a surface tends to have undesirably low contrast. Here too terrain elevations may be exaggerated
“for all but the most mountainous regions. This is equivalent to multiplication of the components
of the gradient by a constant factor, and corresponds to a simple transformation of the reflectance
map. For reflectance maps based on reflection of light originating from an assumed source, a
similar effect can often be achieved by a decrease in the elevation of the source. For flat surfaces
the source may be lowered to a mere 10° or 20° above the horizon, where normally it might be at
45°,
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PRODUCING SHADED OVERLAYS

The generation of shaded images from a digital terrain model using the reflectance map is
straightforward (see Fig. 1). For each point in the terrain model the local gradient (p, g) is found.
The reflectance map then provides the appropriate brightness R(p, g), to be plotted on a suitable
gray-level output device. All computations are local and can be accomplished in a single pass
through the image.

To illustrate these ideas a simple program is shown (see Fig. 5) that docs not incorporate any
of the elaborations described later on, Two arrays are used, Z to store the terrain elevations and B
to store the calculated brightness values. The latter has one row and one column fewer, since its
entries’ correspond to points lying between those in the elevation array (the formulas for py, and
qy, are used). The spacing of the underlying grid is DX in the west-to-east direction and DY in
the south-to-north direction. The procedures PE(1,]) and QE(1,)) estimate the slopes, while the
- procedure RM(P,Q) calculates the corresponding brightness using a particularly simple reflectance
map. The resulting values range from 0.0 (black) to 1.0 (white) and have to be scaled appropriately.
before they can be fed to a particular gray-ievel output device.

procodure SHADING(N, M, DX, DY); integer N, M; real DX, DY;
begin array 7{0:N,0:M}, B_[O:N —1Lo:M-1;

real precedure PE(, J); integer 1, J;
PE:= ([} + Z{1- 10 — Z{LI~1} = Z[1-11—-1}) 7 (2.0 DX);

real procedure QE(]I, 3); integer 1, J;
Q=@ +2ZJ-0 - 211—1J) - Z{i—-13-1) /(2.0 DY}

real procedure R(P, Q); real P, Q;
RM 1= MAX(0.0, MIN(1.0, (1.0 + P — Q) 7 2.0));

{read 1errain elevations into array 7>

forJ:= 1step luntit M —1do
forl:= 1stepluniit N—1do
B{l—13—1] : = RM(PE(, J), QE(, D):

Swrite brighiness values from array B>

_end

Figure 5: Simple program to gencrate shaded output from a terrain model.
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Typical terrain models are quite large and may exceed allowable array storage limits or even
the address space of a computer. Fortunately only two (or three) rows of the terrain model are
needed for the estimation of the local slopes. The program given can be easily modified to read
the tesrain model, and to write the calculated gray values, one line at a time. This makes it possible
to deal with terrain models of essentially arbitrary size.

Next one should note that terrain models typically are stored using integer (fixed point)
representation for elevations to achieve compactness and because elevations are only known with
limited precision (an elevation may be given in meters as 4 16-bit quantity for cxample). Similarly,
gray values to be sent to a graphic output device are typically quantized to relatively few levels
because of the limited ability of tive human eve to discern small brightness differences and the
limited ability of the device to accurately reproduce these (a typical output device may take values
between 0 and 255.) The calculations can thus be carried out largely in integer (fixed point)
arithmetic and even a simple computer is adequate,

USE OF LOOKUP TABLES

Some of the formulas for reflectance maps discussed later on are quite elaborate and it would
scem that a lot of computation is required to produce shaded output using them. Fortunately it is
possible to make the amount of computation equally small in all cases by implementing the
reflectance map as a lookup table, which is computed only at the beginning,

Since elevations are quantized, so are the estimates of slope. [t is therefore not necessary that
one be able to determine the apparent brightness for all possible values of the gradient (p, g).
Further, it is reasonable to place an upper limit on slope, so that only a finite number of possible
values can occur (For example, if slopes between —1.55 and +1.60 are considered, in increments
of 0.05, then there are only 64 possibilities for p and 64 for g, and a lookup table with 4096 entries
can be used). A second justification for the use of a lookup table is the quantization of the gray
values produced. It makes little sense to calculate the apparent brightness with very high precision
only to coarsely quantize the result. A convenient rule of thumb is that the number of possible
discrete values for each gradient component need not be more than the number of gray levels
available from the output device. The final choice of quanuzanon must take into account both of
the above considerations.

One can scparate the cstimation of slope from the calculation of gray value, dnd produce an
intermediate file of coded surface gradient values. - This file need not be larger that the original
terrain model if the gradient is quantized properly (if p and g can each take on 64 values, each
gradient can be encoded as a 12 bit value).” The code in the lookup table can be based on ways of
expression surface orientation other than in terms of components of the surface gradient. In any
case, a file of surface orientation codes can be fed through a lookup table procedure to produce the
final output. 1in this fashion different reflectance maps, encoded as different lookup tables, can be
applied to a terrain model easily, with little more effort than ro,admg and writing a file. The
illustrations here were produced this way.

Many gray-level raster displays have a translation table between the image memory and the
digital-to-analog converter driving the cathode ray tube intensity control. The quantized, packed
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reflectance map can be loaded into this lookup table, while the image memory is loaded with the
coded slope matrix. This allows one to view the same terrain with a variety of assumed reflectance
properties simply by reloading the translation table, which 15 small compared to the image
memory.

- TAXONOMY OF REFLECTANCE MAPS

Here we have discussed some of the issues one is likely to encounter when developing a
program that produces shaded output. In the remainder of this paper we will analyze a number of
proposed hill-shading methods in terms of their equivalent reflectance maps. Notational tools will
be introduced as they are necded. Rather than proceed in strict historic order, we will discuss
rehiefl shading methods in the following groups:

D Rotationally symmetric reflectance maps — gray tone depends on
slope only;

2) Methods based on varying line spacing or thickness to modilate
average reflectance;

3) Ideal diffuse reflectance and various approximations thereto;

4) Gray tone depends only on the slope of the surface in the direction
away from the assumed light source;

5) Methods depending on more claborate models of diffuse reflectance
from porous material, such as that covering the lunar surface;

6) Models for gloss and Justrous reflection - smooth surfuce, extended
source and rough surface, point source.

AVERAGE REFLECTANCE OF EVENLY SPACED DARK LINES

Some early methods for hill-shading achieve the desired control of gray tonc by varying the
spacing between printed lines. One advantage of this approach is the ease with which such
information can be printed, since it is not necessary to first screen a continuous tone image. One
disadvantage is the confusion created when the lines used for this purpose are layed on top of
others portraying planimetric information. While the directional textural effects of the lines are
important in conveying information about shape, we concentrate herc on the average reflectance.

Consider inked lines with reflectance ry covering an area of paper with reflectance r,, (see
Fig. 6). The ratio of the area covercd by ink to the area not covered is the same as the ratio of the
width of the lines to the width of the uninked spaces. This in turn equals b/w, where b is the width
of the inked line and w the width of the uninked space measured along any direction not parailel to
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< b——— W —»

Figure 6: Magnificd portion of surface covered with lines. The average tone depends on the
fractional arca covered by the lines, as well as the reflectance of the paper and the ink.

the lines. If we ignore diffusion of light in the paper, then the average reflectance of the surface is

3 Wry, + b Ty
T w+b ®)
-, __b -
or, R = TW "t b(r}v rb) )

If, for example, the paper reflects all the incident light, and the ink none, then r,,=1 and rp =0, 50
that R = 1— b/(w + b).

SLOPE OF THE SURFACE IN AN ARBITRARY DIRECTION

In the calculation of gray value produced by some methods of hill-shading it is necessary to
know the slope of the surface in an arbitrary direction, given the slope p in the west-to-east
direction and the slope g in the south-to-north direction. Note that p and ¢ are the first partial
derivatives of the elevation z with respect to x and y, respectively. Consider taking an infinitesimal
step dx in the x dxrecnon and an infinitesimal step dy in the y direction. The change in elevation dz
is given by

dz = pdx+ qdy 10)

Along a contour line for example, the elevation is constant, so that for a small step dx = a ds and
dy = b ds, we can write;

0.9 (ad)ds=0 (1

where " denotes the dot-product. The local direction of the contours, (g, b) is of course
perpendicular to the local gradient (p, g).
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Now-consider taking a small step in an arbitrary direction, (po, qo) say. Thatisletdx = p o ds
and dy = ¢ ds. The length of the step, measured in the xp-plane is,

N AT X (12)

While the change in elevation is,
dz=(p,p+q,9ds . (13)

Consequently the slope, change in clevation divided by length of the step, is,
) INIXX
VPt 4
If we let a be the angle between the vector (p, qo) and the x-axis, then, the above can alsoc be
written, ' :

14

s=pcosa + gsin a (15)

The direction in the xy~plane in which the slope is maximai can be-found by differentiating with
respect to a. The direction of steepest ascent is (p, ¢) and the maximum slope equals '

VP +?. (16)

Lehmann's Boschungsschraffen

One of the earliest methods for depicting surface shape using a form of shading is that of
Lehmann [2,3). Hlustrations based on ad foc scales of increasing darkness as a function of slope
("Schwirzegradscalen™) had been published before, but there was no systematic analysis of this
approach until the appcearance of an anonymous publication attributed 1o Lehmann. In his
method, short lines in the direction of steepest descent, called hachures, are drawn with spacing
and thickness specified by rules that ensure that the fractional area darkened is proportional to the
angle of inclination of the surface, 8. That is, steeper implies darker. The lines merge, producing a
cominuous black area, when @ exceeds some maximum value @ o typically 45° or 60°. The slope
of the surface equals the tangent of the angle of inclination or "dip". Using the expression for the
slope in the direction of stcepest ascent, we get,

tand =~/ p> + ¢°. an

Consequently, the average refiectance is,

Rlp, ) =r,=(r,—rp . a1y
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When the angle of inclination excceds the maximum, the lines coalesce and R(p, g) = rp, We can
also writc the above in another form,

RO =r,— (=)o )
- o .

Here, @, the azimuth of the direction of steepest descent, does not appear in the formula on the
right, since apparcat brightness in this case depends only on the magnitude of the slope, The
direction and magnitude of the surface gradient can be found from a map prepared according to
Lehmann's rules. The direction of stecpest descent lies along the hachures, while the slope is
directly related to the average tone that results from the width and spacing of these lines. In
analyzing his method we have concentrated on calculating the average reflectance produced in the
printed product. It should be pointed out that this method also gives rise to textural effects that
will not be discussed.

Another interesting aspect of Lehmann’s method is that the lines or hachures were drawn
starting on one contour and ending on the next. This greatly contributed to the later development
of the contour representation (Isschypsen) for terrain surfaces, that was to ultimately replace most
of these early attempts at portraying surface shape [7].

Contour Density

Another method is based on the observation that lines on a contour map are more crowded in
steep arcas and that this crowding leads to darkening of tone or average gray value. This side
effect may be helpfui in visually conveying information about the nature of the surface. In order
to calculate the dependence of the average Iocal reflectance on the gradient, {p, ¢), we have to
determine the spacing of contour lines on the map. We assume that the surface is locally smooth

/%/ 4'/»

J

L//d/k >

Figure 7. Spacing between successive contour lines along a given direction on the topographic
map. '
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and can be approximated by a plane, at least on the scale of the spacing between contour lines (If
this is not the case, aliasing, or undersampling problems occur in any case). '

Consider a portion of the surface with slope s in some direction not parallel to the contour
lines (see Fig. 7). Assume that the map scale is & and the vertical contour interval 8. Then it is
clear that the spacing between contours on the map d can be obtained from the formula for slope,

-6
§= T | (20)
If we take the crosssection of the surface in the direction of steepest ascent, then s = pe+q-.
As a result we can write,
ké

d= ﬁ ' @1y

On the map, d=b+w. That is, the spacing between contours is the sum. of the width of the
contour lines and the width of the blank spaces between them. The average reflectance then is,

Rp.d=1,~ L)V P+ & @™

The result can also be expressed as,
RO.9)=r,~ 5, — rpand, 23)

where @ s the inclination of the surface. The above expiessions only hold if w is not negative,
When the slope is too steep, contour lines overlap, and the average reflectance is simply equal to
The In the special case that rw™= 1 and rb=0, the above simplifies to,

Rp.d=1-2%/F+&. | 9

Typically b/(k8) may equal 1or 1/v 3.

ljiffuse Surface under Vertical Hlumination

The methods discussed so far produce tones that depend on the magnitude of the gradient
only, not its direction. This is similar to the effect one would obtain if a physical model of the
terrain was illuminated vertically, with the light source placed near the viewer. An ideal diffusing
surface has an apparent brightness that is proportional to the cosine of the incident angle i as
discussed later. This is the angle between the direction of the incident rays and the local normal,
which, in the case of vertical illumination, is just §. Therefore,

R(6.9) = cos 4, @5)

1 .
‘or, Rp 9 = —-TW/—TT———:? . 26)
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Instead of illumination from a point source, one may consider the effect of a distributed
source. A uniform hemispherical source illuminating a diffuscly reflecting surface leads to a result
of the following form [140},

R'(8.9) = cos?(6/2) =% (1 + cos 8), v1)

1.1 1 : ‘
or, Rp, g) =5+ 5 —————me | 28)
‘ - Rpg=5+5 Ty (28)

This reflectance map leads to flatter, even less interpretable pictures, since the range of reflectances
has been halved and all reflectances have been shifted upwards by a half. In the derivation of the
formula above, reflection from the surrounding terrain surface is ignored. If the terrain surface
diffusely reflects a fraction p of the incident light, the constant term in the above expression is
increased from Y% 10 %A(1 + p), while the coefficient of cos @ decreases from ¥ to 2(1 — p). Itis
at times suggested that a component of surface brightness due to distributed illumination from the
sky be added to that resulting from oblique illumination, This however typically detracts from the
shaded result, rather than improving it, _ .

The methods discussed so far give rise to rotationally symmetric reflectance maps, that can be
described adequately by a single cross-section, showing tone versus slope [11]351[36]). This
representation has sometimes been misused for asymmetric reflectance maps, where it does not
apply. Rotationally symmetric reflectance maps produce shaded images that are difficult to
interpret. Moving the assumed light source away from the overhead positicn gives rise to better
shaded map overlays, but forces us to introduce some new concepts. '

The Surfiace Normal

The surface normal is a vector perpendicular to the local tangent plane. The direction of the
surface normal n can be found by taking the cross-product of any two vectors parallel to lines
locally tangent to the surface (as long as they are not parallel to cach other). We can find two such
vectors by remembering that the change in elevation when one takes a small step dx in the
x-direction is just dz=p dx, while the change in elevation corresponding 1o a step dy in the
ydirection is dz=q dy. The two vectors, (1,0, p) dx and (0,1, ¢) dy, are, therefore, parallel to
lines tangent to the surface and so their cross-product is a surface normal.

n=(L0pX(0,Lg=(-p—ql). - - (29

Note that the gradient (p, q) is just the (ncgative) projection of this vector on the xy-plane. A unit
~ surface normal N can be obtained by dividing the vector n by its magnitude :

N=1+7+&. . (0)

While it is convenient to specify directions as vectors, it is at times helpful to use sp‘herical
coordinates instead. A direction can then be given as an azimuth angle, ¢, measured
anti-clockwise from the x-axis, and a polar or zenith angle 8 (see Fig. 8). (In navigation, the
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X

Figure 8: Definition of the azimuth angle, . and the zenith angle, . Here, azimuth is measured
counter-clockwise from the x-axis in the xy-plane, while the zenith angle is measured
from the z-axis.

azimuth angle is usually measured clockwise from north, and the elevation angle is given instead of
the zenith angle. These are just the complements of the angles used here.) The unit vector in the
direction so defined equals,

N = (cos @ sin 8, sin @ sin §, coS 8. ' €3]

To find the azimuth and zenith angle of the surface normal we identify components of
corresponding unit vectors. Then,

. q 14
sing = — and cosg = — =3 (32)
P+ v+
while, : .
. P +qZ 1
sin § = £ and cosf = ——/—————ms. : 33)
+ 1P+ ¢ : v 1405+
Conversely, '
p=—coseptand and g=—singtand. (34)

We will find it convenient to use both vecter and spherical coordinate notation to specify direction.
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Position Of The Light Source

The reflectance maps discussed so far are rotationally symmetric about the origin, only the
magniiude of the gradient, not its direction affecting the resulting gray value. This corresponds to
a situation where the light source is at the viewing position. Most hitl-shading methods have the
assumed light source in somic other position, typically in the north-west, with a zenith angle of
around 45° (80=4S°, P,= 135°). The unit vector,

S = (cosp,sin . sing sinf . cosf,) _— (35)

points directly at the light source. A surface element will be illuminated maximally when the rays
from the light source strike it perpendicularly, that is, when the surface normal points at the light
source. By identifying components in the expression for the surface normal n0=(~— Py 1)
with those in the expression for the vector pointing at the source one finds that the components of
the gradient of such a surface element are,

p, = — cos @, tan 50 and g, = —sin P, tan g,. (36)
When theqsource is in the standard cartographic position, this means,
p,=Vv2 and gq =-UV2. Gn

This standard position for the assumed light source was probably chosen because we are used to
_viewing objects lighted from that direction {1]. When we ook at nearby objects in front of us, our
body blocks the light arriving from behind us. Further, when writing on a horizontal surface,
many of us find our right hand blocking light coming from that direction. We thus often arrange
for light sources to be to the left, in front of us. While we can certainly interpret shading in
pictures where the light source is not in this standaid position, there scems to be a larger possibility
of depth reversal in that case, particularly if the object has a complex, unfamiliar shape,

Returning now to the specification of the position of the light source, we find two identities
that will be helpful later:

pop 9,4
cos(p—g,) (33)
: ° w/ P+ Bt
and, PP+ g =tanftan b cos(p—e@)). _ 39

It also follows that the slope of the surface in the direction, (po, q 0), away from the light source is,
S s=unfcosip—e). )
Tanaka’s Orthographical Relief Method

A method proposed by Kitird Tanaka in 1930 [10][11], involves drawing the lines of
inte:'sectiozz of the surface with evenly spaced incfined planes. These planes are oriented so that
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their common normal points towards an equivalent light source (see Fig. 9). Thus slopes tilted
away from this direction have contours spaced closely, giving rise to heavier shading than that on
horizontal surfaces, while surfaces lying parailel to the inclined planes are lightest. As in
Lehmann’s method, some information may be conveyed by the dxrecuonal texture of the
contours. Here we concentrate on the avcrage reﬂectance only. -

Figure 9: Side-view of a hill cut by inclined planes. Viewed from above, the lines of intersection
crowd together where the surface slopes away from the equivalent source. Conversely,
there are no lines where the terrain surface is parallel to the inclined planes.

A contour is the intersection of the terrain’s surface z=z(x, y) with a plane. The equation
=z applies to a horizontal plane appropriate for ordinary contours. For' mchned contours” an
mc!med plane is used with an equation of the form

(=py gD (x32 :
T =z . - 4y
. v 1+p,+4q, . .
The vector (— Py 4, 1) is perpendicular to the inclined planes, Ordina_ry contours represent the

“locus of the solution of z(x, y)=z,, while inclined contours are the loci of solutions of the
equation,

1

——— )P x—gq ] = 2. 42
ﬁ-ﬁm[ » Py qo)] ° v 42)
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We can now apply our analysis of the contour density model to the modified surface, 2’ (x, y),
defined by the left hand side of this equation! All we need arc the slopes of this new surface,
Differentiating the above expression with respect to x and y, we get,

PP,

and g = —a— o @3)
vV 140+ 4, vV 1+p, T4,

. 7 3
b v 0=p)" + (4=q)
Rp. @) =r, — 5=5(r,—r . (44)
@9 =ry = 15w f‘—‘—qzl it
We obtain the expression for contour density, derived earlier, when p =g —O Also, in the
specmlcasethatrb- ro=Lp, =1/v2 2,and g ==1/v7,

b A =1V + (‘]+1/\/7)2
V2
It is sometimes useful to express the apparent brightness as a function of the azimuth.¢ and zenith

angle @ of the surface nonnal. If we let @  be the azimuth and 4 the zenith angle,of the normal
to the inclined planes, then the formula can be rewritten as follows,

Finally then,

R(p.g) =1~ (45)

R(0.9) = 1y~ 25 (r,—rp) cos 8, +/ 1anZ6—2tan § and, coslp— p )+ @anZd, . (46)

When 6 =45°, rp,=0and r =1, then, as Tanaka showed [10]{11],

v1I-—sin28cos(p—

R(0.9)=1- 7(% v 2 cos 0(‘;) g )‘ S
How does one choose the parameter 5/(k8)? Tanaka felt that the shading produccd by his -
method should match that secen on a surface covered with an ideal material called a perfect
diffuser. The apparent brightness of such a surface varies with the cosine of the incident angle, -
between the surface normal and a vector pointing at the light source. He introduced a parameter
called the line factor. It is the ratio of the width of the inked line, b, to, k8/sin 8 o the interval

between inclined contours for a horizontal surface, The line factor is just,

[ 2 F
L Po % : (48)
k8 V IR+ E

Tanaka proposcd varying the line width b in order to produce shading that matches that seen on a
perfect diffuser, but realized the impracticality of this approach for all but polyhedral surfaces
[101{11]. Resigned to using a fixed line width, he chose to optimize the line factor by considering
the brightness distribution on a spherical cap extending to 45° slope. With the source at 45°
elevation, the least deviation from the brightness distribution one would see if the surface was a
perfeet diffuser is obtained when the line factor equais 0.3608. Consequently, b/(k8) = 0.3608
V' 2. Finally then, ‘

R(p, g) =1 - 03608 o/ (p—1/V2)? + (g+1/V2). . (49)
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It is unfortunate that this method later gave rise to some misunderstanding as well as a less
rigorous hybridized form [15]. '

A common tepresentation for relief form is the block diagram, an oblique view of a serics of
equally-spaced, vertical profiles {97]—[102]. The projection typically is orthographic, although at
times a perspective projection is utilized. Surfaces not visible to the viewer are eliminated (see
Fig.10). Shading can of course be applied to oblique views as may be done in sophisticated flight
‘simulators of the future. We concentrate here on map forms that provide for superposition of
planimetric information however, and digress only to point cut that part of the appeal of block
diagrams lies in their implicit shading, due to the variation in the spacing of lines. .

Following the discussion in the last section, it is clear that the equivalent light-source position
is in the horizontal plane at right angles to the vertical cutting surfaces. The analysis just presented
then applies directly. Things are a little more difficult if the result is to be expressed in terms of
the coordinate system of the surface rather than one oriented with respect to the viewer. Details
may be found in appendices B & C, where contour density shading and Tanaka’s inclined contour
method are shown to be special cases of this more general situation. '

Figure 10: “Block-diagram” representation of terrain surface, This is an isometric projection of a
series of uniformly spaced vertical profiles of the surface viewed from the south-east.
Note the shading effect due to the variation in line spacing.
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Wicchel's Contour-Terrace Modcl

Imagine a three-dimensional model of the terruin built by stacking pieces of some material
cut according to the shape of the contours on a topographic map [8]. If the thickness of the
material is chosen correctly the model will be a scaled approximation of the terrain, Jooking a little
like a tiered cake. Hluminating this construction with a distant point source will give risc to a form
of shading since each contour "terrace” casts a shadow on the one beneath it (see Fig.11). Wiechel
[8] was the first to analyze the reflectance propertics of such a surface. In order to calculate the
average brightness of a portion of the model, when viewed from above, we must  determine the
width of the shadow relative to the width of the terrace,

 The width of the shadow, mcasured perpendicular to the contours, varies, dc{)cnding on the
orientation of contours relative 1o the direction of the rays from the source. For example, when
measured this way, the width is zero where the contour is locally paraliel to the projection of the
rays on the xy-plane. Measured in a vertical plane containing the light source however, the width
of the shadow is constant, since the terrace has a fixed height (see Fig.12). If the light source has a
zenith angle &, the contour interval is &, and the map scale 4, then,

b
tzm0°=-,a§ ‘ . | (50)

b, ot =/ Q)

To calculate the average brightness we must know the width, 4, of the terrace in the model,
measured in the same vertical plane. The slope in this plane evidently is just

_ k&
s= =77 | (52)

We know that the slope of a surface in the direction {r o,qo) is,

o+ q.q : ‘
‘ Rt
Solving for d from the last two equations and for & from the two before them, we get

PRl A )

For example, when the local surface normal, (—p, — ¢, 1), is perpendicular to the direction 1o the
source, {(— Py ~ 4y 1), their dot-product is zero and b/d=1. The terrace is then covered exactly by
the shadow. In the above expression both the contour interval and the map scale have cancelled,
as one might have predicted, : : :

When (p p + 'qaq) < —1, shadows coalesce and no further increase in b/d is possible, When,
on the other hand, (pop + qoq) > 0, the slope is facing rowards the light source. This means that no
shadow is cast. In this model, shading only occurs on slopes facing away from the source, while
those facing towards it are all uniformly bright. This is certainly not what one would expect of a
real surface and suggests that the contour-terrace model has some shortcomings. This is not
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Figure 11: Shadows cast in the contour terrace model. The width of the shadows, measured

perpendicular to the contours, varies with the direction of the contours relative to the
direction of the incident rays.

\b//
/A

~

Figure 12: Section of the contour terrace model in a vertical plane containing the light-source
The width of the shadow, b, measured in this plane is constant, while the width of the

terrace, (b+w), depends on the slope of the surface in a direction parallel to the
projection of the incident rays on the ground plane.
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surprising since apparcnt brightness depends on surface orientation, not height, and while the
-model represents height with reasonable accuracy it does a poor job of modeling surface
orientation. Indeced the surface of the model is mostly horizontal, with some narrow strips of a
vertical orientation. The latter are not even visible from above.

Wiechel noted that light would be reflected from these vertical surfaces onto the terraces [8].
The surface thus appears brighter, viewed from above, near vertical surfaces facing towards the
light source. He made the simplifying -assumption that reflection produces uniformly bright
patches with the same shape as shadows that would be cast were a source to be placed opposite the
actual light source. This is not a reasonable assumption unless the vertical surfaces are made of
narrow mirror- facets, each oriented perpendicular to the direction of the incident light! In this
“case, surfaces illuminated by reflection as well as by direct light have a brighiness twice that of
those illuminated only by direct light. This version of the model is fortunately simple enough to
be amenable 10 analysis. First note that, if we assume the surface to be an ideal diffuser, then the
brightness of horizontal surfaces that are neither shudowed nor itluminated by reflection equals the
cosine of the zenith angle of the source. Therefore, let r,=0 and r,y=COS g o Where,

1
cosf ) = = (55)
+ 1+ pg + qo2
1+pp+gq
and so, Rp. )= — 2 (s6)
1+p;+q, _
or, R'(6.@) =1+ tan 0 tan 4 cos(p—e )] cos g, 7)
‘When the source is in the standard position (North-West at 45°) this becomes,
' 1+ (p—g/vV2
Rp. @)= ————. (58)

V2

Note that here apparent brightness alréady becomes equal to one when the angle of inclination is
. about 30.36° towards the light source. This may be contrasted with the case of the ideal diffuser,
to be discussed later, where it reaches one only for an inclination of 45°. Wiechel used this model
as the second approximation to the ideal diffuser (the first will be discussed later) and expressed
his result as {8], '

cosi

= 9

where 7is the incident angle, and e is the emittance angle, here equal to 8. These angles will play
_ an important role in the discussion of more recent methods later on.

According to Raisz and Imhof [1],[27]—[29] terraced contour models were used in the late
1800’s. An early example is an alpine excursion map published in 1865 that employed “contour
shadows” {1]. The first attempts at photography of obliquely illuminated surfaces also used
terraced terrain models [27]. Wieche!l probably was influenced by these early efforts when he
chose to develop this method for hill shading.
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Wicchel's Ielligkeitsmaassstab

Wiechel based his method for irregular surfaces on that developed earlier by Burmester for
regular surfaces [9). In order to make his approach practical he needed a graphical device for
translating measurements of contour interval and direction of steepest  descent into gray tones.
“The “Helligkeitsmaassstab™ (his spclling) is arranged so that these measurements can be
transferred directly, and the correct tone determined fiom a serics of isophotes, contours of
constant brightness. Steep slopes, with small contour intervals correspond to points near the origin
- of this diagram, while those of gentle slopé map into points further away.

His diagram therefore is a sort of inside-out reflectance map! The main difference is that
radial distance from the origin in gradicnt space is proportional 10 tan 4, while it is proportional
to cot @ in this emrly precursor. This coriesponds to a conformal mapping operation referred to as
inversion with respect to the unit circle. Wiechel showed that his diagram’ corresponded to the
image of an appropriately itluminated logarithmoid made of the desired material. The equation of
this surface is

z=—log +/ X + yz. _ (60)

The reflectance map, by the way, can be thought of as the image of a paraboloid [138].

It is indeed unfortunate that Wiechel's construction was ignored. Wicchel developed two
shading methods that did not require this two-dimensional diagram. In cach case apparent
brightness depended only on the slope of the surface in the direction away from the light source,
This property manifests itself in the reflectance map in the form of parallel straight-line contours,
The effect is less apparent in Wiechel's diagram, where isophotes become nested circles through
the origin, with centers along the line in the direction of the light source.

Tanaka’s Relief Contour Method

Kitird Tanaka, in 1939, developed an ingenious method [24]—[26] for drawing the shadows
one would see if one looked at a contour-terrace model. His method is based on the observation
that the length of the shadow, measured in the direction of the incident rays, is constant. Using a
pen with a wide nib one can trace the contours, while maintaining the orientation of the nib
parallel to the direction of the incident rays (as in roundhand writing). Only those portions of the
contours are traced that correspond to slopes facing away from the assumed light source. Tanaka
used black ink on gray paper for reasons that will become apparent. 1f the reflectance of this paper
_isrythen, : '

R = rg+ (rg = 1) (o0 + 4,) ©1)

provided (pop + qoq) <0, otherwise R(p, q)= Ty

Tanaka also came up with a way of modulating the average reflectance of the paper in areas
that corresponded to slopes facing fowards the source. His approach is somewhat analogous to
taking the negative of a picture of the contour-terrace model obtained by illuminating it from the
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other side. Thus white “shadows™ are cast in the opposite direction to the black shadows. These
can be drawn with white ink on gray paper using the same method as before except that now the
section of the contours that correspond to slopes facing towards the light source are traced. tis
easy to sce that the resulting average reflectance will be, ' :

R =1 =) .+ a9 ‘ (62)

where rw‘is the reflectance of the white ink. When (pap + (,zuq) < 0, no "shadews" appear and
R(p, g)= Ie Tanaka combined the two methods, tracing contours using both white and black ink.
The corresponding reflectance map R(p, ¢) equals one of the expressions abme depending on
whether the slope lIocally faces away from or towards the assumed source.

He apparently also experimented with nibs of different width for white and black ink. This
corresponds to changing the elevation of the assumed sources. If the width of the nib is b, then the
relationship is, '

b

}-g:,taneoz v poi+qz. : 63)

The results of this tedious manual method are most im p;essxv e [24]—[26]. One can write the above
expressions in the alternate notation,

R{8.9) = e + (rg—- rb) tan ftan 8 cos(p—g,), when cos(p—g )<0, (64)
R(6,9) = rg~ (rg- rptandan @ cos(p—-g ), when cos(p—e)>0. 65)

Tanaka preferred a reflectance for the gray background halfway between that of the black ink and
the white ink. Placing the light source in the standard position we get,

R @) =311+ ZA), | )
or, R(0.9) = % [1 + tan 6 cos(p—g )] 67)

. This result can also be expressed as, (cos 7 cos g) / cos e, where g is the phase angle, here equal to
g o Note that except for scaling by cos g, this is the same result as that obtained by Wiechel for his
contour-terrace model. One effect of this scaling is that apparent brightness rises 10 one only when

- the angle of inclination is 45°, on the other hand, horizontal surface now have a gray value of only ‘
0.5.

‘Tanaka’s Hemispherical Brightness Distribution

Tanaka needed a way to display the dependence of tone on surface oricntation to pemﬁt

~ comparison of the results produced by his two methods and. what would be seen if the surface
modeled were an ideal diffuser. He chose an oblique view of the brightness distribution on a
- spherical cap extending to 45° inclination [10][11][24]-[26]. If the cap is increased until it is a
- hemisphere, one obtains something like the reflectance map. One difference is that radial distance
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from the origin in gradient space is proportional to tan @, while here it is proportional to sin 6.
" Thus, while the reflectance map is a central projection of the Gaussian sphere onto a horizontal
plane, this is a parallel projection. Put another way: we are dealing here with an lmage of a
hemisphere, while the reflectance map is the image of a paraboloid.
Tanaka's oblique views of the distribution of brightness versus surface orientation do not
_provide the quantitative information available in a contour representation such as Wiechel's. His
method is nevertheless very helpful and it is unfortunate that few seem to have paid any attention
0 it, judging by the continued use of inappropriate forms. It is not uncommon for example to see
the dependence of tone on surface orientation shown as a curve depending on one variable, slope,
when it clearly depends on two, slope and the direction of steepest descent, or equivalently, the
two components of the gradient.

Lambertian Surfaces

We now turn from graphical methods using variation in line spacing and line thickness to
those utilizing continuous tone or halflone techniques. These are often based on a model of what
the terrain would look like were it made of some ideal material, illuminated from a predetermined
direction. The result differs from an aerial photograph, since no account is taken here of varying
terrain cover, the light source is ofien placed in a position that is astronomically impossible, and
the terrain model has been smoothed and generalized. Not being like an aerial photograph is an
advantage, since acrial photographs, taken with the sun fairly high in the sky, often do not provide
for easy (inonocular) comprehension of surface topography.

The amount of light captured by a surface patch will depend on its inclination relative to the
incident beam. As scen from the source the surface is foreshortened, its apparent (6r projected)
area cqual to its true arca multiplied by the cosine of the incident angle. Thus the irradiance is
proportional to cos /. Strangely, it is commonly assumed that the radiance (apparent brightness)
of the surface patch is also proportional to cos i. This is generally not the case since light may be
reflected difl ferently in different directions, as can be seen by considering’a specularly reflecting
material.

Onc can however postulate an ideal surface that reflects all light incident on it and appears
equally bright from all viewing directions. Such a surface is called an ideal diffuser or Lambertian
reflector and has the property that its radiance equals-the irradiance divided by o [142][143]. In
this special case the radiance is proportional 10 the cosine of the incident angle. No real surface
behaves exactly like this, although pressed powders of highly transparent materials like barium
sulfate and magnesium carbonate come close. Matte white paint, opal glass, and rough white
paper are somewhat worse approximations, as is snow.[131]. Most proposed schemes for automatic
hill-shading are based on models of brightness distribution on ideally diffusing surfaces
{8L.[10L[111.149]—-157}171].i73L[74], even though there is no evidence that perception of surface
shape is optimized by this choice of reflectance model. As we will see, reflectance calculations
based on this'model are not particularly simple either.

The cosine of the incident angle can be found by considering the appropriate spherical
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triangle (sec Fig.13) formed by the local normal N, the direction towards the source S, and the
. vertical V. One then finds as Wieche! already showed [8],

R'(8,9) = cos 8 cos@ + sin §_sin § cos(p—g,) . (68)

Alternatively one can simply take the dot-product of the unit vector N norma!l to the surface and
the unit vector § pointing towards the source {138],{140}

(=p.~q 1) (~p,—q, 1)

cos i = . (69)
-\/ 1+p2+q2 -\/]+p§+qg
" The reflectance map (normalized so that its maximum is one) then is,
1+p ptq.q
R(p, q) - o (4]

. . (70)
«\/1+p2+q2 -\/1+p§+q§ :
When (1+p_p+g,9) <0 the surface element is turned away from the source and is self-shadowed.
In this case, R(p, ¢)=0.
- In the case of a point source of light at 45° zenith angle in the north-west, the reflectance map
- becomes :

1+ (p—)/V32

R(p, g) = . -
(n, q) ﬁm ) )

- Figure 13: Spherical triangle used in caleulating the incident angle, i, from the azimuth and
’ ~ elevation of the light-source and the azimuth and elevation of the surface normal. The
direction towards the viewer is V, the direction to the source is S, while the surface
normal is N. : :
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Peucker's Piecewise Linear Approximation

The computation of gray value using the equation for the cosine of the incident angle is .
complicated and slow because of the appearance of the square root. Peucker [61] experimented
with a number of approximations that are easicr to compute. He found that an adequate,
piecewise linear approximation for slopes less than one, is

03441 p — 05129 ¢ + 06599, for p+g>0 | (72)
05129 p— 03441 g+ 06599, for p+q<0 3
o, R(p, g) = 04285 (p—q) — 0.0844 | p+q| + 0.6599, (74)

where | p+ ¢ | denotes the absolute value of. (p+4). The above approximation produces exccllent
shaded overlays, that in fact seem easier to interpret that those produced using the exact equation
for a perfectly diffusing surface.

Brassel's Adjustment Of Light Source Position

Perhaps the most outstanding examples of shaded maps.come from Switzerland. Techniques
for portraying the shape of the surface and integrating this information with planimetric detail
have been perfected by a number of artists there {11.{40]—[47]. The results of automated methods
as described here, cannot compete with the beauty of their products. Nevertheless, automated
methods do provide a systematic, accurate way for generating shaded overlays. They will become
of particular importance when good digital terrain models becomic easily available. Brassel
attempted to incorporate as much as possible of the Swiss manncr into his program [71]—[74]. He
quickly realized two problems with methods based purely on Lambertian reflectance models.

The first effect is explained as follows. Surface elerments sloping away from the source are
dark, while those tilted towards the source are brighter. Brightest are those that have the light’ rays
Afalling perpendicularly on the surface. Surface elements sloped more steeply, however, become
darker again. This lack of monotonicity of brightness with slope is zmparently disturbing and
reduces the ability of the observer to correctly interpret the shape. Brassel ameliorated this effect
by reducing the elevation of the lighit source-in regions where this problem occurred. '

If the zenith angle of the source a, is smaller than the zenith angle of the direction defined by
the surface normal 8 he moves the souxce to a new zenith angle 0 that is a weighted av crage of
0 and 4. To be precise, '

G,=max[l,afd+(1-a)d], 7s)
where ' . 8 =tant / pP+gt. ' (76)

In his thesis [71), the weighting factor a was one, so that adjustiment in elevation was
‘complete. Curiously, this simple method has the effect of lowering the light source even for
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surface elements tilted away from the source, as long as the slope is large cnough. The above
method can also be expressed directly in terms of the components of the gradient. When @+ qz)

>(P2+4d),
I T A LT an
T Yt * YRt
where p, and g, are the components of the gradient of a surface element oriented to be maximally
illuminatled by the adjusted light source, If there are no further adjustments of source position, the
reflectance map in the specified region becomes,
Z
+(p,rtq q)(\/p +q°/ v/ P te)
A+p*+q%)

R(p. g) = (78)

Adjustment of the Azimuth of the Source

Next, Brassel observed that ridge and stream lines become indistinct when their direction was
more or less aligned with a direction toward the source. Opposite faces of a mountain or valley
may end up with similar gray values when the cosine of the incident angle is similar for the two,
even though they have quite different surface orientations. Maximum contrast occurs when a
linear feature lies at right angles to the direction of the incident light, and Brassel therefore moves
the light source in azimuth towards the local direction of steepest ascent or descem (whlchever ]
closer).

The amount of adjustment depends on two parameters (see Fig.14). The maximum amount
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Figure 14: Sawtooth function giving adjustment of azimuth of the light source as a function of the

angle between “regional” ridge and valley directions and the direction of the light
source in Brassel's scheme,
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of udjustment is specified by w (55° for example), while the azimuth difference at which this
maximum occurs is specified by g (80° for example). The details of the computation are not very
important but are given here for completeness, First, the azimuth of the direction of steepest
ascent is computed using N

Q= étan(—q.-*p). (79)

where atan(y,x) is the direction of the line from the crigin to the point (x.,;) measured
counterclockwise from the x-axis. Next, the differcnce between ¢ and the azimuth of the source
P, is reduced to the range —#/2 o + «/2 by adding or subtracting integer multiples of w. Let
the result be Agp. The adjusted azimuth of the source is then calculated as follows,

_ . . Al 7/2-]Agl
(pfl - (po + w Sla“(Aq‘) n“n[ g ’ W/z__g ]s (80)
where sign (Ag)is +1 when Ag > 0, and —1 when Ap <0. Now one can calculate the gradient
(7, qn) of the maximally iHuminated surface element, or instead, use Wiechel's formula to get the
cosine of the incident angle directly,

R'(8,9) = cos 8, cos 0 + sin @, sin 8 cos(p—g,) . t3))

Here it should be pointed out that in Brassel's scheme the gradient {(p, g) used in the above
formulas for adjusting the azimuth of the source is u regional value derived from ridge and stream
lines in the arca near a particular_point.  In this way the cartographer can influence the final
appearance of the shaded overlay by altering these manuaily entered linear featurcs, This method
involves rather complicated global calculations that do not lend themselves to implementation in
the straightforward way we have discussed. The apparent brightness of a surface element depends
on both its orientation and some function of its surround. :

A possible objection to this idea is that the distribution of light sources does not vary from
place to place in a real imaging situation unless the sources are very close to the surface. It must be
pointed out, however, that people seem to have little difficulty interpreting synthetic images where
the assumed light source position varies. In fact, few notice such drastic changes in assumed light
source position as are apparent in a recent map of the polar regions of Mars {150]. This may be
related to the fact that our perception of shaded images does not give us a good appreciation for
global differences in depth, instead giving us an excellent appreciation of local surface orientation
patterns. '

Whatever the merits of this argument, the above method can be modified to fit in with the
notion of the reflectance map, as defined earlier, if one_ uses the local gradient (p, g) in the
calculation of the adjusted source position. The illustration shown here uses this modified version.
Note that in Brassel's scheme the adwstment in azimuth and zenith angle of the source are
independent and can be carried out in cither order.

Brassel also adjusted the apparent brightness according to the height of the terrain, This is a
simple local computation that can be easily added to any of the basic methods presented here. It
was not included here to simplify comparisons. -
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Alternate Lizht Source Adjustment Method

Brassel used a piccewise linear adjustment in azimuth. A similar effect can be achieved using
a smoothly varying function like

sin 8¢ = (8/2) sin Ap—¢ ) = Bsin(p—g )cos(p—9,). ' (82)
- Thatis,
(p,9—q,0) (p 0+ q,9)
sin 8¢ = & —F N 83
v=F (0° +4°) (P2 +q2) @)
Adjusting the azimuth of the source by d¢ leads to a new position specified by,
ps‘: p,cosdp — g sindgp and g;=p sindp + g cosdp. 84)

Adjustment is complete for small angles when 8 =1. The use of tigenometric functions is avoided
in the above calculation, since both the sine and the cosine of 8¢ can be computed without them,
Next we turn to the adjustment in the elevation of the source. To avoid the peculiar
phenomena of the lowering of the source even for surface elements turned eway from it, we adjust
the elevation according to the projection of the surface normal on a plane containing the source.
2
When (pg p+4,9) > (95 + &),
psp"_qsq‘ psp+qu
Py =P 3 and ¢, =¢.~F3 7. (8s)
nUUS W Pt

In this region then the reflectance map becomes,
v 1+ (oo p+a, %05+ 42
R @) = > , (86)
. -\/ 1+p°+g
otherwise it is calculated as before, that is, the cosine of the incident angle is
4p,ptdn4

-\/ 1+p° 4+ -\/ 1+p‘,21+q§
The advantage of the above method of adjustment is that simple calculations in terms of the
components of the gradient replace trigonometric equations in terms of azimuth and zenith angles.

k(p. 9 =

87

Wiechel's Projected Incident Angle

The first serious analysis of an approach based on the shading seen on the surface of an
obliquely illuminated matte object is that of Wiechel {8]. He started by assuming a perfectly
diffusing surface and proposed connecting points of equal apparent brightness by isophotes, He
correctly determined the brightness of a perfect diffuser as already mentioned. In order to make
calculations less unwieldy he also suggested three approximations, the second of these being the
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contour-terrace model ulready discussed. His first method involved approximating the cosine of
the incident angle, 7. by the cosine of 7, the projection of this angle onto a vertical plane lying
parallel to the rays (sce Fig.15). By applying the analogue formulas to the lower spherical triangle
(sec Fig.16) we get, '

-
sin i cos i = cos i sin icos x . (8%)
Abplying the analogue formulas next 10 the whole triangle we get

sin icos x = cos § sin 00 — sind cos()o cos{p — (po). t3)

The second equation allows us to eliminate x from the first and obtain an expression for tan 7',
Using the identity

1 ' '
cos i’ = —pmm———— (90) -
v 1+ tan® i’
wc finally find, -
' , cos |
R(0,9) = > 5 \ 23]
cos @ \/ 1 4+ tan“d cos (q;~<po)
where, using the cosine formula as before,
cos i = cos § cos B + sindsin 8 cos(p—rp,) . (92)

Alternatively one can project the vector n=(-—-p—g 1) onto the plane with normal
s=(q,,~ P, 0). The result will equal,

n':n-(n's)fz-. (%3)

where s is the magnitude of the vectors. This projected vector will be perpendicular to the line in
which a vertical plane including the light source cuts the surface:

, 1
W' = pRort a0 ~ar Pt 9,9, pi+dil. (94)
o] o ’
Taking the dot-product of the projected vector and the vector pointing at the source, then dividing.
by their magnitudes we find, .

1+p ptaq.q

v 1A E A 1+ pta, 0P+ D)
This matches the expression for perfectly diffuse reflection for values of (p, ) along the line from

the origin to the source point (p - qo). When the source is in the standard position the equation
becomes

R(p, ) =

©5)

1+ (p—q)/V2

V2/1+@-g?2° ©6)

R(p. q) =



Figure 15: Projection of the surface normal on a veitical plane containing the assumed
light-source. The projected normal is perpendicular to the fine in which the plane cuis
the terrain surface,

S

Figure 16: Spherical triangles used to calculute the projected incident angle, ¢, and the projected
surface inclination, &', The direction towards the viewer is V, the direction 10 the
- source is S, while the surface normal is N.
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Whi]c' these equations are more complicated than the original equations for the cosine of the
incident angle, , it must be pointed out that the angle 7 can be estimated graphically by measuring
the contour interval in a divection parallel to the incident light rays. The same is true of Wiechel's
sccond approximation introduced earlier, This greatly simplifies the manual construction of
shaded maps from contour maps, and makes it possible to use a simple one-dimensional scale for
brightness instead of Wiechel's more elaborate "Helligkeitsmaassstab”, This property manifests
itself in the reflectance map by the appearance of purallel straight line contours. |t is also
interesting to note that Wicchel's "approximations” produces results that seem better than those
obtained using the equation for the perfect diffuser. Unfortunately, experimentation at his time
was limited because of the lack of appropriate technology for systematically generating continuous
tone patterns. Apparently no maps made by this method were ever published {1},

Wiechel’s Modified Brightness

Finally, Wiechel postulated a material that would nor appear equally bright from all viewing
directions, but instead had brightness varying as the cosine of the emittance angle. This was used
in part to discuss the relationship between the contour-terrace model and the original surface, but
also put forward as a third, "modified brightness” model that might be used in calculating gray
" tone. In this case brightness varies in proportion to (cos i cos ¢). We can normalize his result here
by dividing by the maximum of this product, cos?(g/2), where g is the so-called phase angle, Liere
equal to (The term phase angle stems from work on lunar photometry, where this angle equals
the phase of the moon). Then,

_ 4 COSicose .
R(p, D=2 77 cos . 97
or, .
: 2(1+p ptq ) o '
Rp, q) = s . - (98)
A+ +/ 1+p2+¢2) A+ p2+4)

" Incidentally, this function does not satisfy Helmholtz's reciprocity law [124}], and therefore cannot
correspond to the reflectance of any real surface illuminated by a point source.

Marsik’s Automatic Relief Shading

Blachut and Marsik further modified Wiechel’s approximation, partly as a result of their
dissatisfaction with the fact that a horizontal surface does not appear white when a perfectly
diffusing material is assumed [581.[59]. This may have stemmed in part from early conventions in
map-making where horizontal surfaces were portrayed without hachures {4]—[6]. Marsik also’
aimed for simpler calculations and considered the slope in the direction towards the source. For
- some reason, he proposed making the density of the printed result equal to the tangent of the
projected slope angle @' (see Fig. 15). Density is the logarithm (base 10} of the reciprocal of the
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reflectance. - Applying the analogue rule to the upper spherical triangle (see Fig. 16) one can show
that,

0 =cosdsin @' — sindcosd'cos(p — @) - 99)
Thus, tan 0" = tan 6 cos(p — @), (100)
and, : R(0.9) = 1W0ten O cos(p — @) (101

Using the expression for the projected normal n’ developed in the last section, or, remembering the
expression for the slope in the direction (p,. qo). one can also show,

R(p, ¢) = 10(p0p+qoq)/ v PO+;J° . 102)

- When(p,p + q,9)>0, R(p, 5) > 1 and so all surfaces facing towasds the light source are white. No
information is available to the viewer regarding surface shape in these areas. If the assumed light
source is in the standard position we get the simple formula,

Rip g) =10 P~ /Y2, a03)

Marsik also limited the density to a maximum of 0.7 to avoid interference with planimetric
information on the map.

Lommel-Seeliger Law.

Many surfaces have reflectance properties that differ greatly from those of an ideal diffuser.
The photometry of rocky planets and satellites has intrigued astronomers for many ycars
[121}—[130]. Several models have been proposed to explain the observed behavior. One of the
earliest, developed by Lommel [119] and modified by Seeliger [120], is based on an analysis of
primary scattering in a porous surface [126}{128]. Their model consists of a random distribution of
similar particles suspended in a transparent medium and results in a reflectance function that is
given here in its simplest form,

—r
‘ 1+ (cds e/¢os i) ’
unless cos 7 < 0, when the surface is self shadowed. Here 7 is the incident angle, and e is the
emittance angle, the angle between the local surface normal and the direction to the viewer, here

equal to 6. The expression equals 1/(1+cos g) when /=0, where g is 1hc'phase angle, here equal
to @ . Using this value for normatization and remembering the expression for cos / one finds,

1+ cosd,
1+ cos§/(cos 6 cos§ + sinfsing cos(p—1p,)) (105)

(164)

R(.9) =

or
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1+1/+/ 1-%-pz+qo2
1+ +/ 1+p§+q§/(l+pop+qoq)’

unless (1+p_p+ q,9) <0, when R(p, g)=0.. When the source is in the standard position,

LUV DR A+ (g VT
Red =07 v o—a/vI (07)

The Lommel-Seeliger law has been used in automated relief shading by Batson, Edwards and
Eliason [70). ‘

Based on detailed measurements and modeling, Fesenkov [123][127] and later Hapke
1281 {130] further improved the equations for the reflectance of the material in the maria of the
moon. Hapke imagined the surface as an open porous network into which light can penetrate
freely from any direction. His result has three components: the Lommel-Secliger formula for
reflection from a surface layer containing many scattering points of low reflectance, Schonberg’s
formula [122] for reflection from a Lambertian sphere and a complicated factor resulting from
mutual obscuration of the particles. The results of such investigations are often expressed in terms
of angles other than the ones introduced so far. The Lommel-Seeliger law, for example, can be
expressed in a way which simplifies the problem of calculating the shape of the lunar surface from
shading in a single image [137}[138],[151]. The angles needed, luminance longitude and

S

luminance latitude, arc defined in Appendix D.

R(pg) = (106)

Minnaert's Reflectance Function

Minnaeri discusses a large variety of models for the reflection of light from rough surfaces
[126]. He also proposed a class of simple functions of the form,

cos®i cos® e . (108)

intended to fit observations of the radiance of lunar material while obeying the reciprocity law
[124]). Here & is u parameter to be chosen so that the best fit with experimental data is obtained.
This parameter is meant to lie between zero and one, with the above expression becoming equai to
that for the perfect diffuser when k=1, We can normalize this expression so it equals one when
i=0,

1

K. K-
R(p. @) = 05— (109)
: cos” ‘g

' / 2 72
Rp, g) = {l+p012)+ X ]+pz+
, .
1+p°tyq | v 1+pi+dt

Particularly Simple Reflectance Maps

(110)

Several methods discussed here have reflectance depending only on the slope in the direction
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away from the assumed light source, leading to parallel straight line contours in the reflectance
map. These include Wiechel's first and second "appreximation”, Tanaka's relief contour method.,
the "law" of Lommel and Seeliger, Minnaert's formula when k=%, as well as Marsik's automatic
relief shading. These methods are quite effective in producing overlays that are easy to interpret.
One can construct more such reflectance maps, including some that are even easier 1o calculate.
One possibility, for example, is,

R g =30+ a1
+ .

g DI

YEET:

is the slope in the direction away from the source. Values less than or equal to zero correspond to

black, while values greater than or equal to one correspond to white. The parameters ¢ and b allow

one to chose the gray value for horizontal surfaces and the rapidity with which the gray values

changes with surface inclination. The simple program shown earlier (see Fig. 5) uses this form

with =0, b=1/v2 and p0:1/1/_7, g,= -1/V32.

A simple aliernative, where all possible slopes are mapped into the range from zero to one is,

where, (112)

_1.1_ p+a
R(p, q) = bl + 3 ‘/—mbz T (p,+a)2 .

This has the advantage that the reflectance does not saturate for any finitc slope and all changes of
inclination in the vertical plane including the source translate into changes in gray level.

Another way to achieve this effect is the following, somewhat reminiscent of Lehmann's
approach,

(113)

1,1 _ympta
R, g =5+ pan [T B2, (114
These three formulas are given in a form where the rate at which the gray value changes with
surface inclination is the same at (p' +a)=0.

Glossiness - The First Off-Specuelar Angle

Not all surfaces are matte. Scme are perfectly specular or mirror-like.  Since smooth,
specularly refiecting surfaces form virtual images of the objects around them, patches of high
“brightness will appear when such a surface is illuminated by an extended source, like a fluorescent
light fixture, or by light streaming in.through a window. The size of the patches depends on the
sohd angle subtended by the source as well as the surface curvature, while the brightness
distribution is that of the source.

To study reflection of an extended source in a specular surface, it is useful to introduce the
"off-specular” angle s between the direction S 1o the center of the source and the direction S, of
the point that is specularly reflected to the viewer (see Fig. 17). This, incidentally, is also the angle
between the direction to the viewer V and the direction V' in which the rays from the center of the
source are spccularly reflected.
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Figure 17: Spherical triangles used to.calculate the first off-specular angle, 5. It is the angle
between S, the center of the source, and S, the direction from which light is specularly
reflected towards the viewer. Equivalently, it is the angle between V, the direction of
the viewer, and V', the direction in which light from the center of the source is
specularly reflected.

We assume a circularly symmetric source, with brightness L(s) at eccentricity s. This is the
brightness the viewer observes in the specularly reflecting surface. Calculating the first
off-specular angle sis simple using the appropriate spherical triangles:

cos s = cos 2i cos g — sin 2/ s_,in g cosx, (115)
cose=cosicosg—sinising cosx. (116)

Here, i is the incident angle, between the local normal and the direction to the source, e=4§, is the
emittance fmg]e. between local normal and the direction to the viewer, while g=0  is the phase
angle, between source and viewer. Eliminating x from the two equations and expanding tlie sine
and cosine of 2/, one gets, '

coss=2c0s i Cose~ Cos g. ain

Substituting expressions in p and g for cos i, cos e and cos g one can rewrite this as,
2(1+p pt+q,9/(A+p°+q") — 1

cos s = . ' (118) -
v 1+p§+q§ :
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- This result can also be obtained simply by finding the direction § from which a ray must come to
be specularly reflected to the viewer ¥, by a surface element with normal N.

S=2AVNN-V . 119)

where V=(0,0, 1). The off-specular angle is the angle between § and the center of the source S
SO

Wss=S*S =2AS*MVN~-(S* V). (120}

Note that the cosine of the first off-specular angle can be calculated easily, without using
trigonometric functions. The contours of constant coss turn out to be nested circles in gradient
space; with centers iying on the line from the origin to the point (Pys 4,) This can be seen by
noting that the locus of the point ', for constant s, is a circle about the point S and that circles on
the Gaussian sphere give rise to circles in gradient space when projected stereographically {138]

The cosine of the off-specular angle s equals one when conditions are ‘right for specular
reflection, that is, when e=/ and g=i+e. This can be seen by sctting e=i=g/2 in the

_ trigonometric expression. for cos s.

Bui-Tuong’s Formula - Specular Surface, Extended Source

_Having seen how 10 calculate the off-specular angle s, we can now make a reflectance map, by

assigning the distribution of source brightness L{s). This function should be nonnegative

" monotonically decreasing with s, and equal to one when s=0. For ease of calculation one choice
mightbe

L(s) = cos” (/2) = [% (1 + cos }"2 ' BEP3)

where 7 is a number that defines how compact the bright patch is (a useful value might be around
20). So far, we have developed the reflectance map for a specular surface and a circularly

~ symmetric source. Many surfaces, such as glazed pottery or smooth plastic, have both glossy and

" diffuse components reflection. Specular reflection takes place at the smooth interface between two
materials of different refractive index, while the matte component results from scattering of light
that penetrates some distance into the surface layer.

‘ ~ We can combine these two components as follows

Rp,q) = [0~ o) + aL9] 505 a2

where « determines how much of the.incident light is reflected specularly. The expression is
scaled so that its maximum is (approximately) equal to one. Here we have assumed the source,
while distributed, is compact enough so that the diffuse reflection component can be
- approximated as cos . The above expression obeys the reciprocity law of Helmholtz [124] which

applies to real surfaces illuminated by a point source. Bui-Tuong used a reflectance function



109

- ‘similar to the one derived above in his computer graphics work [113]. He apparently tried to
- model reflection from a surface that is not perfectly smooth. This requires a differcat off-specular
angle however, as will be seen in the next scction. :

- Luster - The Second Off-Specular Angle

Refulgency, gloss or shine can also appear when a point source is reflected in a surface that is
not perfectly smooth. When a slightly uneven surface, of a material that gives rise (o metallic or
dielectric reflection, is illuminated by a point source, bright patches will be scen surrounding
points where the local tangent plane is oriented correctly for specular reflection. The size of these
patches will depend on the roughness of the surfice and the surface curvature, while the
distribution of brightness will depend to some cxtent on the texture of the microstructure of the
surface. _ ‘

In this case we will need 1o calculate the second offspecular angle 5 between the focal normal
N and the normal N' oriented for specular reflection of rays from the source S towards the viewer
¥ (sec Fig. 18). By considering the appropriate spherical triangles one finds, ’

cos § = cosi cos(g/2) — sin i sin(g/2) cos x, ©(123)
COSe = Cosi cosg — Sinising cosx . o ' (124)

Figure 18: Spherical triangles used to cﬂalcuiate the second off-specular angle, s’. It is the angle
between the actual surface normal, &, and a surface normal, N, oriented to specularly
reflect rays from the source towards the viewer.
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Eliminating x from the two cquations and expanding the sine and eosine of the phasc angle g, one
" finds, :

.  Cositcose

€SS =5 ¢os (g72) _ - 29 :
or
_cositcose :
coss = rm} ) (]26) .

This result can also be obtained by finding the vector N, normal to a surface clement oriented
to specularly reflect a ray from the source in the direction of the viewer V. That is,

Nzggi 5;' : @

“The off-specular angle is the angle between the actual surface normal N, and the vector N'

o s SN+ (VN
coss = N+ N_\/“m (128)

The surface microstructure of an uneven surface can be modeled by many randomly disposed
_mirror-like facets, too small to be optically resolved, each turned a liitle from the average local
surface orientation. One can define a distribution P(s") describing what fraction of these

microscopic facets are turned away from the average local nonnal by an angle 5. For ease of
calculation one choice might be,

P(s) = cos™ 5. - , (129)
Blinn’s Formula - Rough Surface, Point Source

One can use the fact that a normal N oriented for specular reflection of the point source
towards the viewer, lies in the direction (— P14y 1), where

py= —cosp tan(f /2) and g, = —sing tan (00/2j. (130)

We can also find N by normalizing the vector (S+ ), so that its third component equals 1:
Py 95

P, = and ¢, = . -
Voo 14024 T 1+ 1R H

- A surface with gradicnt (p,, g,) is oriented just right to specularly reflect a ray from the source to
the viewer. This can be scen by noting that when p= py and g=gq,, then

1

COSi=cose= —m=m—m— 132

7 \/ 1-*-pzl+qz1 (132)

. and, cosg=——5—5—1. 133
| - o1+ g (133)

" Inany case,
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I+p.pt+q.q

-\/ 1+p8+¢° ﬁﬁ—pﬁ-ql
Note that 5° will tend to be (roughly) half of s when both angles are small. Combining matte
- components of surface reflection with those from the rough outer surface we get,

cos s = (139

R(.9) = [(1~a) + aPS)] csrsy | (135)

The above reflectance map also obeys Helmholtz’s reciprocity law rmd is normalized so that its
maximum is {approximately) equal to one. Blinn and Newell give a similar reflectance function,
claiming it was what Bui-~Tuong had proposed [114]. The two are not the same however since the
two off-specular angles are different; in fact, the contours of constant § are nested ellipses in
_ gradient space, while, as mentioned earlier, the contours of constant s are nested circles. Indeed,
Bui- Tuaong's mode! corresponds to reflection of an extended, rotationally symmetric source in a
- specular surface, while the modet presented in this section applies to reflection of a point source in
_arough surface.

Blinn and Newell's Model for Specular Surfaces

One of the methods discribed by Blinn and Newell [114] assumes a perfectly specular surface
in which the world surrounding the object is. reflected. To make computations feasible, they
imugine the surrounding objects at a distance great enough so that each part of the surround
" appears to lie in essentially the same direction from every point of the surface of the object. In this
case one can imagine the brightness distribution of the surrounding objects projected onto the
inside of a large sphere. The gray value used for a particular surface patch then is found by
computing the direction ' from which z ray must come to be specularly reflected to the viewer V,
by a patch with surface normal V. We have already seen that,

S=2(V*NN—-V. ) ' - (136)

. The appropriate gray value is then determined from the spherical distribution of brightness. In
practice the sphere is mapped onto a plane by calculating the zenith angle, §  and azimuth, ¢ of

S5 {114]. The brightness distribution can be equally well specified in gadsem space [138], since it is
alsoa pxo;ecuon of the Gaussian sphere,

Surface models incorporating randomly dispersed mirror-like facets were first studied in the
1700%s. This type of microstructure has been investigated extensively since then, despite the
¢ difficulties of reasoning about the: three-dimensional nature of reflection from such surfaces.
Recently, Torrance and Sparrow further elaborated on these models [134]1135] in order to match
- more closcly experimental data showing maximum brightness for angles of reflection larger than

the incident angle. They included in their considerations the effects of obstruction of the incident
and emergent rays by facets near the one reflecting the ray. Blinn simplified and explained their
- calculations [115] and used them in producing shaded images of computer models of various
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objects. The overall result can be broken into a product of three terms, one dependent on the
distribution of facet orientations, the second being the formula for Fresnel reflection {rom a flat
dielectric surface, while the third is the gcometric attenuation factor accounting for partial
_occlusion of one facet by another. We will not discuss these models in any more detail here.

Models for glossy or lustrous reflection have been used with great success in computer
graphics 10 increase the impression of realism the viewer has when confronted with a synthetic
. picture of objects represented in the computer. Unfortunately, these methods do not seem 10
improve the presentation of surface shape for cartographic purposes.

Colored Shading

It is ofien said that quantitative information about the surface cannot be obtained from relief
- shading [1]. Contour lines on the other hand do allow measurements of elevation and estimation
of the gradient. Shading does provide some information about the gradient too, but cannot be
used to determine both of its components locally, since only one measurement is available at each
point. Since we can perceive the shape of objects portrayed by shaded pictures, it seems that these
local constraints do lead to a global appreciation of shape, apparently based on our assumptxon that
the surface is continuous and smooth,

If two shaded images, produced with the assumed light source in diffcrent positions, were _
available however, two measurements could be made at each point allowing one to determine the
gradient focally [141}. It is inconvenient to work with two shaded overlays; fortunatcly though,
they can be combined by printing them in different colors. In fact, vet another overlay can be
added in a third color, but it adds no new information, since the two components of the gradient
are already fully determined by the first two.

Colored shading corresponds to iflumination by multiple sources, each of a different color.
The exact color at each point in the printed result is uniguely related to the gradient at that point.
Thus quantitative information /s available in this new kind of map overlay. Further, ambiguities
present in black and white presentations disappear. By positioning the light sources properly, one
can avoid problems occasioned by the accidental alignment of ridge or stream lines with the
direction of incident light. Thus the need for ad hoc adjustments of the azimuth of the assumed
light source is removed.

Coiored shading is easy to interpret in terms of surface shape and effective in portraying
-+ surface form. It is unlikely however that it will be widely used because of the added expense of
printing and conflict with existing uses of color in cartography to distinguish various kinds of
. planimetric information. Amongst other things, color is now used to code height and surface

cover. Further, vellow is used in ordinary shading for sun-facing slopes, while violet is used for
- shaded regions [152). This is thought to simulate the increased sky illumination component in
areas turned away from the sun.

* Summary and Conclusions

Afier a brief review of the history of hill-shading an efficient method for providing shaded
overlays was described. It depends on a lookup table containing sampled values of the reflectance
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- map. Traditional, manual methods were explored in terms of their equivalent reflectance maps, as
were- phenomenonlogical models used in the computer graphics community. Methods that have
been proposed for mechanizing the generation of relief shading were also treated. The automated

- method desc_ribed here is very flexible, since it can usc any reflectance map. o ‘

Nine of the reflectance maps described were plotted as contour. diagrams (see Fig. 19 and
Fig. 21). The first one (A) is independent of the direction of the gradient, depending only on the
slope. This gives rise to a rotationally symmetric diagram. Three other diagrams (F, H, and 1)
show parallel straight lines. These correspond to reflectance maps which depend only on the slope
in the direction away from the source. Reflectance maps for perfectly dilfusing (C) and glossy (D)
surfaces are included too. Tanaka’s two methods (B and H), Peucker’s approximation (G),
Brassel's source adjustment (E), Marsik’s method (F), and one of the particularly simple methods
(1) complete the set.

Shaded images of five mathematically defined surfaces, cone, circular wall with triangular
cross seclion, sphere, torus and "volcano shape’, were then created using these reflectance maps
{see Fig. 19). Several of the subfigures give one a good appreciation for the shape of the objects.
Assumption of a perfectly diffusing surface (C) and Peucker's approximation (G) lead to good
restilts, while the image corresponding to a glossy surfaces (D) is perhups the most vivid.

Information from digital terrain models of Lake Louise, Gulf Islands, Dent de Morcles and

- Les Diablerets, is presented in Fig. 20. Histograms of terrain elevation (A) are followed by
scuttergrams of surface gradient (B). Flevation is shown as brightness in another series of
subfigures (C). Contours are shown at two densities (D and E). Finally, the surfaces are shown

‘with brightness decreasing with slope (F).

The nine reflectance maps were then used 1o make shaded images of the four regions (sce
Fig. 21). Some reflectance maps appear much better than others in conveying an immediate
impression of surface shape. The rotationally symmetric reflectance map (A) corresponding to
overhead illumination of the terrain, is not very good, for example. Perfectly diffuse reflectance
(C) is not optimal either. In fact, an approximation to the formula for a Lambertian reflector (G)
scems to produce better results, Glossy reflectance components (D), while very useful in the

_portrayal of regular objects, result in tones that are too dark to be useful in a map overlay. We may -
also not be used to seeing a geographical surface presented in this form.

i Marsik’s method (F), in which half of the surface is a featureless white, is clearly not very

~ effective. Several of the other methods require careful scrutiny before conclusions about their

o adequacy can be made. Amongst the best are Wiechel’s modified brightness method and the
" modification: of Brassel's method presented here, The methods depending on the slope in the

* direction-away from the light source appear to be quite adequate (H and 1). These are to be -

" recommended unless there are good reasons to prefer one of the other methods.

Shaded images were created from several other digital terrain models (see Fig. 22) using one
of these simple methods (I). The terrain models differ widely in their quatity, resolution and
-origin. They do show the utility of the methods described here in presemmg the mformauon ina

- digital terrain model to a human observer.

Shading is an important depth cue. The choice of reﬁecrance map should not be based on
some ad hoc model of surface behavior, experimental measurement of reflectance of some

-material, or formulas that happen to be easy to calculate. lnstead, one should use a reflectance
map that gives rise to an immediate, accurate perception of surface shape. :
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7

Figure 19: Five geometric figures displayed using nine reflectance maps.. Shown in the lefimost
column are contour diagrams of the reflectance maps. . The remaining five columns
. show the method applied to a cone, a circular wall with triangular cross section, a
- sphere, a torus and a 'volcanoe’ shape. The reflectance maps are: (A) Lehmann’s
method, (B) Tanaka's first method, (C) Lambertian, (D) Glossy, (E) Brassel’s
~method, (F) Marsik’s method, (G) Peucker's approximation, (H) Tanakas second
‘ method (I) and a paricularly sxmp]e method. E
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Figure 21: Shaded images of the four digital terrain models. The subfigures were made using the
same reflectance maps as those used in Figure 19. The ninc reflectance maps are again
shown in the leftmost column. Small crosses mark points in gradient space where
slope-components are integer multiplies of one. Where approriate, a small square

marks the gradient of a surface element that is perpendicular to the rays from the
assumed light-source.
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It is important to arrange for the range of gray tones in the shaded overlays to be limited so as
to avoid obscuring planimetric detail {153]. This is an area that has not received much attention so
far. Another imponant issue relates to the appropriate scale for shaded overlays. Shaded overlays
are useful for large scale maps. For small scale maps it is necessary to generalize the surface to
avoid the appearance of complex textures that may be difficult 1o interpret
{11.0481.073){74).[1541.{155}. This nonlinear process of removing small hills, ridges and valleys has
not yet been satisfactorily automated,

Figure 22: Shaded images of ten digital terrain models. A particularly simple reflectance map was
used. (A) Lake Louise, Alberta, Canada (B) Gulf Islands, British Columbia, Canada
(C) Les Diablerets, Switzerland (D) Dent de Morcles, Switzerland (E) Mexico City,
Mexico (F) Jewell Ridge, Virginia (G) White Tail Butte, Wyoming (H) Tehachapi
Mountains, California (I) Mount Index, Washington and (J) Mauritius, Indian Ocean.
The lines in the subfigures correspond to a length of 10 km on the surface.
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An as yet unexplored possibility depends ou finely sampled terrain clevations. This is the
ability of shading to show finc detail. Contour maps have to be carefully gencralized or smoothed
to avoid showing confusing detail on a scale smailer than the contour interval. This is not the case
with shading, although historically the manually produced maps have always shown only quite
coarse features. We do not yet know whether the textures produced by the shading method when
working frora really fine terrain models will be confusing, or of great value in identifying different
types of terrain, '
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Appendix A: Rotated Gradients

It has been cartographic practice to assume a light source in the north-west at a 45° elevation
above the horizon. It is helpful in this case to introduce a rotated coordinate system (see Fig. 23)
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q' = (p+g/\ 2

P'= (p-qi/ 2

Figure 23: Rotated coordinate system that may be convenient when the assumed light-source is in
the north-west. The reflectance map is symmctrical about the p™-axis.

with

] — - 1 + .
P = Eﬁg and ¢ = %3‘1 137
If Ax=Ay=A say, then the slopes in the north-west to south-east and in the south-west to

north-east direction, can be estimated particularly casily by combining the formulas for p,, and 9y
(z,,tz,_ +2z )~ (z_o tz,+z))

’

, (gt vz, ) (z,_tz._+1z)
qw - o+ ++ +2 ﬁAO 0 . ) (139)

If one wishes to estimate the slopes for the center of the top-right quadrant (in the unrotated
coordinate system) rather than the central point one may combine the expressions for by, and

gy, togetthe simple formulas,
- Z . Z 4

’ Z+0 + t +4 . ‘
Pl = e and g = e, a0

One advantage of the rotated coordinate system stems from the fact that models of surface
reflectance considered here are symmetric with respect to a line pointing towards the source. That
is, a surface element with slopes p'=p_ and g'=g, say, has the same apparent brightness as one -
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with slopes p'=p, and ¢'=—¢q_. Thus a lookup tabie based on the rotated coordinate system can
be smaller, since only that haif of the table corresponding 1o ¢ > 0 need be stored,

So far we have assumed that the grid of the terrain mode! is aligned with the geographical
coordinates. If instead the whole model is rotated anti-clockwise by an angle @, then slopes p” and
¢ can first be estimated from the model as described and then transformed as follows:

p=p'cosfd —g'sin§ and g=p'sinf+q cosd. (141)

Alternatively, the model can be resampled to produce a new version on a grid aligned with the
axes.

~ Appendix B: Shading Apparent in Block Diagrams

We can ana}yzé the shading apparent in block diagrams by calculating the spacing between

* . lines as a function of the surface orientation. Let a local surface normal be n=(—-p, —¢ 1). A

series of parallel planes, with common normal s, cuts the terrain surface. The intersections of these
planes with the surface are viewed from a direction specified by the vector v. Jtis assunied that the

viewer is at a great distance so that the profiles are projected orthographically along lines parallel
to v (see Fig. 24). ’
The line of intersection of one of the cutting planes with the local tangent plane will be
parallel to the vector r X s, since the line lies in both planes and is therefore perpendicular to the
" normals, i and s. Now construct a plane through the line of intersection and the viewer. This
plane, called the viewing plane. contains both n X s and v. The normal e of the viewing plane must
therefore be perpendicular to both and can be defined as,

e = (n Xs)Xv ' (142)
ot e=(m-*v)s—~(s*v)n. (143)
Hwe let‘ p=(x 3 2), theﬁ the equation for the‘ }ocaibtangent plane can be written,
np=c, k - (144
for séme value of the constant Cp- Similarly, the equatioﬁ of a particular cutting plane is, :
) s p=c. . ‘ (145)

Different values of ¢, correspond 1o different cuuing planes. The plane corresponding to the
value ¢ +deg is separated from the plane corresponding to the value ¢, by a distance dcs /s,
where 5 is the magnitude of the vector s. The equation for the viewing plane is just,

e°p =c,. (146)
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Figure 24: The viewing plane contains the viewer and the line of intersection of the slicing plane
with the terrain surface. Line spacing in the block-diagram equals the spacing between
successive viewing planes, The dotted line is parallel to the vector v,

Successive cutting planes will intersect the tangent plane in parallel lines. These give rise to
parallel viewing planes corresponding to different values of the constant Co - The spacing of these
viewing planes is of interest, since it equals the spacing of the lines in the orthographic projection.
The plane corresponding to the value c,+dc, is separated from the plane corresponding to the
-value Ce by a distance of de e /e, where e is the magnitude of the vector e. In order to relate the .
spacing of lines in the block diagram to the spacing of the cutting planes we need to find the
relationship between dc, and deg.

A pbint p on the line of intersection lies in all three planes and therefore simultaneously
satisfies the three equations given above for these planes. Expanding the last one of these,
esp=c,,we obta_in,

VG p-GEN@-p=c (147)

or, . (nev) c-sk — (s v) €y =¢Cp - : - (148)
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Here, <y is fixed and so the relationship between changesin ¢ A and cg is simply
dc, =(n*v)deg . (149)

If the interval between cutting planes is & and the map scale is &, then deg /s=k§. Consequently
the spacing between lines in the black diagram, dc e/eis,

d=ks@mev)3, : (150)
where ¢is the magnitude of the vectore = (1 *+v)s — (s« v) n. Finally, we remember that
Rp.q) = r,, = (r,, = ry)" f (s1)

where b is the thickness of the lines, Thus,

L i

Re.dy=ry =L, — ) Sm. (152)

The view vector is tangent to the surface when n« v=0. When this dot product becomes negative,
the surface is turned away from the viewer and should not be visible. Also note that d= k§, when
s« v=0. Onc should therefore choose s and v 50 that they are not orlhogoml to avoid cetting only
“evenly spaced parallel lines,

In the case of perspective projection, line density will increase with distance, and the resulting
reflectance will be lowered because of a change in the effective scale factor £, If the projected
profiies are plotted on u raster device, one has to also take into account the fact that the number of ‘
dots per unit line fength is not constant. The dot density varies as max [{cos @ |, | sin 6 |, where
@ is the angle between the line and the direction of the raster. This variation should be included if
an accurate reflectance map is to be derived for output of this form.

Appendix C: Isometric Views of Vertical Profiles.

" The transformation between the terrain coordinate system and that of an observer viewing the
terrain obliquely can be found by multiplying a rotation matrix corresponding to rotation by ﬂv
about the x-axis with a matrix corresponding to rotation by (#/2+ (pv) about the z-axis, where Py
is the azimuth and g, is the zenith angle of the direction specified by the vector v. If the
coordinates in the observer’s system are x, ', and 2, one finds,

’

; = —sing, x+cosq, y, » A ’ i ) (153)
"= —cosg, cosd, x—sing, cosf, y+sind, z, 7 (154)
Z = +cos g, sind, x+sing, sinf, y+cosd, z. (155)

In the case of orthographic projection, the values of x’ and y' are simply multiplied by the map
scale k, to determine coordinates in the block diagram. :
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The general formula derived in Appendix B appties to all combinations of viewpoint and
cutting plane orientation. It is interesting to look at a few special cases however. We can, for
example, check our result for the contour interval in an ordinary contour map. Here
n=(—p, —gq 1), as always, and s=(0, 0, 1), since we are considering the intersection of the surface
with horizontal planes.. Further, v=(0, 0, 1) since the vicwer is vertically above the surface. Here
then s=1,n* v=1, and e=(p, ¢, 0) The line interval is therefore,

d= ke (156)

T ETA

The same reflectance map is obtained as before. Slightly more complicated is the case of Tanaka's
inclined contours, where s=(—p_, —g. 1). Here, again, n * v=1, while,

e=0-ppa-9,0 as7)

s=+ 1492+, o (158)

and

The line interval is therefore,

v (=1 )" + (g-q,)*
A result leading to the same reflectance map as the one derived before.
Finally, consider profiles running west to cast, that is, s=(0, 1, 0). The resulting traces may be
viewed isometrically from the south-east, a fairly common arrangment for a block diagram. Then
v=(1, —1,1). Consequently, n*v=(1-p+g) and s*v=—1. Further, e=(—p,1-p, 1) and
hence, '

d=k

(159)

1—-pt+gq -

b} .
V2 v l-—p-&-pE
— 2
R(p,q)él—ﬁ-lz‘ ﬂi_p—__ (161)

K 1-ptg

d=k

(160)

So, if rb=0 and ry= 1,

Similarly, for profiles running south to north, s=(1, 0, 0), and,

| T+grg? y
R(p,q)=1—\/_27(% m; 7 - (162)
1-p+gq
At times two erthogonal sets of slicing planes will be used, producing a mesh on the surface. The

reflectance map corresponding to this case can be found by adding the last two formulas and
subtracting one from the result. :

bAppcudix D: Luminance Longitude and Luminance Latitude.

A convention for specifying the orientation of the surface element relative to the direction of a
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Iight source and the viewer has become established in the work on planetary and lunar

“photometry. Imagine a spherc illuminated by a light source above the point S, viewed by an
observer above the point V (sec Fig. 25). These two points define o great circle which is called the
Juminance equator. Points on the sphere can be referenced using the longitude a measured from
the point V along the equator, and the latitude f§.

- Figure 25: Luminance longitude « and luminance latitude B of a surface element are defined as
the longitude and latitude of a patch on a sphere with the same orientation. Longitude
and latitude are measured relative to the jJuminance equator through the light source S
and the viewer V.

- All possible surface orientations can be found on the sphere, and each surface orientation can
be- identified with some point N say. The luminance longitude and luminance latitude
corresponding to a particular surface orientation are the longitude and latitude of N. It is not
difficult to show that, ‘ - '

cose=cosB cosa and cosi=cosf cos(a+tg). - (183)
_Cose cosg— cosi
Converselyf tane = cose Smg (164)
and,
1+ 2IEG — (IP+ E?+ G?
an2p = | ( 1] (165)

{7 — 2IEG + EY
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~ where we have used the shorthand notation, /=cos i, E=cos e, and G=cos g. These results can
- also be expressed in terms of the components of the gradient:

pp+ g ’
tan a = —o‘ﬁ . {166)
. ¢} 0o

So tan a is simply the slope in the direction away from the source. Now,

_ (4, p—p, O°

1+ 2IEG — (I*+E*+G?) = s (167)
A+p°+g)A+p +ay)

(b, P+, 9 + (2 +4dD) ‘

g2 _ EG + 2 _ "o 0 o 0
P -2IEG+ E G DAt ) (168)

so,
9,p—p

tan g = of Pod (169)

2 Zo 2
v @opt+ 1,9 + L+ )
The Lommel-Seeliger law can be expressed in terms of luminance longitude and luminance
latitude as,

cos(at g)
cos a + cos(atg)

170)

and it is clear from this form that scene radiance is independent of luminance latitude.

References
[1} E. Imhof, 1965. Kartographische Geldndedarstellung, Berlin: W. de Gruyter & Co.

[213. G. Lehmann, 1799. Darstellung einer neuen Theorie der Bezeichnung der schiefen Fldchen im
Grundriss oder der Situationzeichnung der Berge, Leipzig.

[311. G. Lehmzmn, 1816. Die Lehre der Situations-Zeichnung oder Anweisung zum richtigen
Erkennen und genauen Abbilden der Erd-Oberfliche in topographischen Charten und

Situation- Planen, Dresden: Arnoldische Buch- und Kunsthandlung.

[4] F. Chauvin, 1852. Die Darstellung der Berge in Karten und Plinen, mit besonderer Riicksicht
aufihre Anwendbarkeit im Felde, Berlin: Nauck’sche Buchhandlung,

[5] F. Chauvin, 1854. Das Bergzeichnen raiione[l entwickelt, Berlin: Nauck'sche Buchhandlung.



134

{6] C. Vogel, 1893. "Die Terraindarstcllung auf Landkarten mittels Schrafficrung,” Pefermanns
Geogr. Miu.,, Vol. 39, pg. 148.

[7} H. Bach, 1853. Die Theorie der Bergzeichnung in Verbindung mit Geognosie, Stuttgart.

{81 H. Wicchel, 1878. "Theorie und Darstellung der Beleuchtung von nicht gesetzmiissig
gebildeten Fliichen mit Riicksicht auf dic Bergzeichnung”, Civilingenieur, Vol. 24, pp. 335-364.

 [91 L. Burmester, 1875. Theorie und Darstellung gesetzmdssig gestalteter Flichen, Leipzig.

[10] Kitird Tanaka, 1930. "A New Method of Topographical Hill Delineation,"” Memoirs of the
College of Engineering, Kyushu Imperial University, Fukuoka, Japan, Vol. 5, No.3
pp. 121-143. :

{11] Kitird Tanaka, March 1932, "The orthographical relief method of representing hill features
an a topographical map”, Geographical Journal, Vol. 79, No. 3, pp. 213-219.

.[12] H. Stl. L. Winterbotham, 1932. "Note on Professor Kitiro’s Method of Orthographical
Relief", Geographical Journal, Vol. 80, pp. 518-520.

{13] P. Wilski, 1934. "FEine neue Jépanische Darstellung der Hohen auf Landkarten,” Petermanns
Geogr. Mit., Vol. 80, pg. 359. '

[14] Jadwiga Remiszewska, 1955. "Metoda cie¢ pochylych w kartograficznym obrazie urzezbienia”
[The Method of Inclined Cut in the Cartographic Presentation of the Form of the Land),
Polish Geographical Review, Vol. 27, pp. 125-134.

[15} A. H. Robinson, and N. J. W. Thrower, 1957. “A New Method for Terrain Representation,”
Geographical Review, Vol, 47, No. 4, Oclober, pp. 507-520. '

[i6]A. H. Robinson, 1961. "The Cartographic Representation of the Siatistical Surface,”
International Yearbook of Cartography, Vol. 1, pp. 53-63.

[17IN. 1. W. Thrower, 1963. "Extended uses of the method of orthogonal mapping of traces of
parallel, inclined planes with a surface, especiafly terrain,” International Yearbook of
. Cartography, Vol. 3, pp. 26-28.
- [18] C. M. King, 1966. Techniques in Geomorphology, New York: St. Martin's Press, pp. 255-256.

191 T. K. Peucker, M. Tichenor, and W.-D. Rase, 1972. "Die Automatisicrung der Methode der
schriigen Schnittflichen,” Kartographische Nachrichien, Vol. 22, No. 4, pp. 143-148.



135

{20] T. M. Oberlander, 1968. ™A Critical Appraisal of the Inclined Contour Technique of Surface
Representation”, Annals, Association of American Geographers, Vol. 58, No. 4, pp. 802-813.

[21] A. H. Robinson, and R. D. Sale, 1969. Elements of Cartography, 3rd edition, New York: John
Wiley. pp. 189-196,

{22} A. H. Robinson, and N. J. W. Thrower, 1969. "On surface representation using traces of
parallel inclined planes," Annals, Association of American Geographers, Vol. 59, No.3.
pp. 600-603. '

[23] T. M. Oberlander, 1969. "Reply to Robinson-Thrower Commentary,” Annals, Association of
American Geographers, Vol. 59, No. 3, pp. 603-605.

[24] Kiitird Tanaka, 1939. "The Relief Contour Method of Representing Topography on Maps,”
The Geographical Review of Japan, Vol. 15, No. 9 & 10, pp. 655-671, 784-796 (Japanese)
pg. 797 (English abstract). '

[25] Kitiro Tanaka, 1950. "The Relief Contour Method of Representing Topography on Maps,';
Geographical Review, Vol. 40, No. 3, pp. 444-456.

[26] Kitird Tanaka, 1951. "The Relief Contour Method of Representing Topography on Maps,”
Surveying and Mapping, Vol. 11, pg. 27.

[271C. Kébcke. 1885. "Ueber Reliefs und Relicf-Photogramme,” Civilingenieur, Vol. 31.
; [28] Y. Pauliny, - 1895. "Memoire iilber eine neue Situations  Pline- und
Landkartendarstellungsmethode,” Streffen’s Qesterreichischer  Militdrische  Zeiischrift,
Vol. 36, pg. 177. '
[29} Erwin Raisz, 1938. Genera7 Cartography, New York and London.

[30}W. Pillewizer, 1957. “Gelindedarstellung durch Reliefphotographie,” Kariographische
Nachrichien, Vol. 7, pg. 141.. i )

[31} O. C. Stoessel, 1959. "Photomechanische Reliefschummerung,” Nachrichten aus dem Karten-
und Vermessungswesen, Vol. 1, No. 10, pp. 53-55.

{321 A. A. Noma, and M. G. Misulia, 1959. "Programming Topographic Maps for Automatic
- Terrain Model Construction,” Surveying and Mapping, Vol. 19, No. 3, September, pg. 335.

[33]H. R. Wilkerson, 1959. "Reliefschummerung durch Photographie von Gelandemodellen, -
Nachrichien aus dem Karten- und Vermessungswesen, Vol. 1, No. 10, pp. 60-62.



136

[34] H. Friedemann, 1962. “Von neuen Erfindungen: Anordnung und Verfahren zur Herstellung
von Schummerungen fir kartographische Zwecke,” Kartographische Nachrichten, Vol. 12,
pg. 150. ‘

[35]P. Richarme, 1963. "L'estompage photographique," Bulletin du comité francais de
cartographie, Vol. 17, pg. 188,

[36] P. Richarme, 1963. "The Photographic Hill Sh"dmg of Maps", Surveving and Mappmg,
Vol. 23, No. 1, pp. 47-59.

[371C. R. Gilman, 1971. “Photomechanical Experiments in Automated Cartography,” in
Proceedings ASM Fall Meeting, San Fransisco. ‘

{381 H. G. Lyons, 1909, The Representation of Reliefs on Maps, Ministry of Finance, National
Printing Department, Egypt.

[39] L. J. Marris, 1959. Hill-shading for Relicf-depiction in Topographical Maps, London.

[40] E. Imhof, 1947. "Geldndedarstellung in Karten grosser und mittlerer Massstabe " Vortrag
Natf. Ges, Ziirich Yanuary,

[41] B. Carlberg, 1954, "“Schweizer Manier und wirklichkeitsnahe Karte, Probleme der
- Farbgebung,” Kartographische Nachrichten, Vol. 4, pp. 8-14.

{42} G Pohimann, 1958. "Heutige Methoden und Verfahren der Geliindedarstellung,™
Kartographische Nechrichten, Vol. 8, No. 3, pp. 71-78.

[43] H. Mietzner, 1959. "Die Schummerung unter Annahme einer naturgemissen Beleuchtung,”
Karioegraphische Nachrichten, Vol, 9, No. 3, pp. 73-79.

[44] E. Imhof, 1959. "Probleme der Kartographischen Gelindedarstellung," Nachrichten aus dem
Karten- und Vermessungswesen, Vol. 1, No. 10, pg. 9-31, 1959,

[45}3. S. Keates, 1961, "Techniques of Relief Representation,” Surveying and Mdpping, Vol, 21,
No. 4, December, pp. 455-463.

[46] F. Holzel, 1962. "Die Gelindeschummerung in der Krise?", Karrographische Nachrichien,
Vol. 12, No. 1, February, pp. 17-21.

" {471 E. 'lmhdf, (Editor) 1963. International yearbook of cartography, London: George Philip and
: Son.



137

[48} F. Holzel 1963. "Generalization Problems in Hill Shading,” Naclmchlen aus dem Karten- und
Vermessungswesen, Vol. 5, No. 5, pp. 23-33.

[49] P. Yoéli, 1959, “Relief Shading,” Surveying and Mapping, Vol. 19; pg. 229. ’

{50} P. Yo#li, 1965. "Analytische Schattierung,” Kartographische Nachrichien., Vo\ 14 No. 4,
pp. 142-148. »

[S1]P. Yotli, 1965. "Analytical Hill Shading,” Surveymg and Mapping, Vol. 25, No. 4, December,
. pp. 573-579.

[521 P. Yoeli, 1966. "Analytische Schattierung und Dichte,” Kartographische Nachrichten. Vol. 16,
No. 1, pp. 17-23.

[531 P. Yoctli, June 1966. "Analytical Hill Shading and Density, Surveying and Mapping, Vol. 26,
No. 2, pp. 253-259.

[341 P. Yotli, 1966. "Die Mechanisierung der Analytischen Schattierung,” ](’arz<>graphi§che
Nachrichten, Vol. 16, No. 3, pp. 103-107.

[S51 P. Yoéli, 1967. "The Mechanisation of Analytical Hill Shading," The Cartographic Journal,
December, Vol. 4, No. 2.

[56] P. Yoéli, 1967. "Die Richtung des Lichtes bei analytischer Schattierung,” Kartographische
Nachrichten, Vol. 17, No. 2, pp. 37-44.

[571P. Yoili, 1971. "An Experimental Electronic System for Converting Contours into
Hill-shaded Relief," [International Yearbook of Cartography, Vol. 11, pp. 111-114.

[58] T. J. Blachut, Z. Marsik, ‘and D. Makow, 1969. "Relicf shading process,” Canada Patent
No. 051-814. :

* [59) Z. Marsik, 1971. "Automatic Relief Shading," Photogrammetrica, Vol. 27, No. 2, pp. 57-70.

- [60} T. K. Peucker, 1972. "Computer Cartography,” A.ésociation of American Geographers,
Washington, D. C., Commission on College Geography. Resource Paper No. 17, pp. 41-54.

{611 T. K. Peucker, and D. Cochrane, 1974. "Die Automation der Reliefdarstellung - Theorie und
Praxis,” International Yearbook of Cartography, Vol. 14, pp. 128-139.

" 162] T. K. Peucker, M. Tichenor, and W.-D. Rase, 1974. "The Computer Version of Three Relief
Representations," in Display and Analysis of Spatial Data, J. C. Davis, and M. McCullagh,
Eds. New York: John Wiley.



138

[63] M. Eckert, 1962. Die Karfenss’issensclvaﬁ:' Forschung und Grundlagen zu einer Kartographie
als Wissenschaft - Vol. 1, Berlin: Walter de Gruyt,

[64] .. D. Carmichael, 1964. “Experiments in Reliel Portrayal,” Cartographic Journal, Vol. 1,
' pp. 11-17. '

{65} M. Eckert, 1965. Die Kartenwisscnschafi:  Forschung und Grundlagen zu einer Kartographie
als Wissenschaft - Vol. 2, Berlin: Walter de Gmyt,

{66} M. S. M{mmomer 1965. "The Production of Shaded Maps on the Digital Computcr " The
Professional Cartographer, Vol. 17, No. 5, September, :
pp. 13-14,

[671P. K. Koldayev, 1967. “Plastic Colour and Shadow Relief Representation,” Academy of
Sciences of the USSR, Council of Soviet Cmoﬂ;aphers Maoscow,

[68] B. F. Spfunt, 1969. "Computer-generated halftone images from digital terrain models,” M.
Sc. Dissertation, Department of Mathematics, Univ. Southampton,

- {691 B. Anda, 1974. " Automatic Hill-Shading using an Automatic Flatbed Drafting Machine with
a Standard Photohead," ITC Journal, Enschede, No. 2, pp. 212-216.

[701R. M. Batson, E. Edwards, and E. M. Eliason, 1975. "Computer Generated Relief Images,”
Journal of Research, U. S. Geological Survey, Vol, 3, No. 4, July-August, pp. 401-408.

{711} K. Brassel, 1973. Modelle und Versuche zur automatischen Schréglichischattierung,” Ph, D, »
dissertation, Geography Department, University of Zurich, Klosters, Switzerlend.

[72) K. Brassel, 1973, "Ein- und mehrfarbige Printerdarstellungen,” Kartographische Nachrichien,
No. 5, pp. 177-183.

[73]1K. Brassel. 1974. "Ein Modell zur Automatischen Schriglichtschattierung,” Internotional
Yearbook of Cartography, pp. 66-71.

- [74] K. Brassel 1974, “A Model for Automated Hill Shading,” The American Cartographer, Vol. 1,
+  No. 1, April, pp. 15-27.

[75]W. Blascke, 1967. "Le Modele Digital M.LT.," Societe Francaise de Photwgrammetrie,
Builetin 27, July, pp. 37-40.

‘ {76] B. W. Boehm, 1967. “Tabular representations of multi-variate functions - with applications to
- topographic modelling," in Association for Computing Machinery, 22nd National Conference
Proceedings, pp.403-415.



139

[77]W. Aumen, 1970. "A New Map Form: Numbers," /niernational Yearbook of Cartography,
Vol. 10, pp. 80-84.

[781M. W. Grist, 1972. "Digital Ground Models: An Account of Recent Research,”
Photogrammetric Record, Vol. 70, No. 4, October, pp. 424-441.

[79} F. Silar, 1972. "Das digitale Gelindemodell - Theorie und Praxis,” Vermessungstechnik,
Vol. 20, No. 9, pp. 327-329.

[80} K. Torlegard, 1972. "Digital Terrain Models - General Survey and Swedish Expenences "
Bildmessung und Luftbildwesen, Vol. 40, No. 1, pp. 21-30.

{81} American Society of Photogrammetry, 1978. Proc. of the Digital Terrain Models (DTM)
’ Symiposium, St. Louis, Missouri May 9-11.

[82] Wild Heerburg and Raytheon, 1968. "B8 Stereomat Automated Plotter,” Company sales
literature.

[83]S. Bertram, 1969. "The UNIMACE and the Automatic Photomapper,” Phatogrammetric
Engincering, Vol. 35, pp. 569-576.

{84] R. H. Seymour, and A. E. Whiteside, 1972. "A new Computer-Assisted Stereocomparator,”
Bendix Technical Journal, Spring, pp. 1-5.

[85] B. G. Crawley, 1974. "Gestalt Contours,” Canadian Surveyor, Vol. 28, No. 3, September,
pp. 237-246.

[86] Bendix Research Laboratories, 1976. “AS-11B-X Automatic Stereo Mapper,”
RADC-TR-76-100, Rome Air Development Center, Griffiss Air Force Base, New York,
Aprxl "

- [87] D. J. Panton, 1976. "Digital Stereo Mappmg * Countermeasures, May, pg. 12.

5 [88] W. Loscher, 1967. “Some aspects of orlhophoto technology," Photogrammetric Record, Vol. 6,
No. 30, pp. 419-432.

[89]1 T. J. Blachut, 1968. "Further extension of the orthophoto technlque * Canadian Surveyor,
Vol. 22, No. 1, pp. 206-220.

- S0} T. . Blachut, and M. C. Van Wijk, 1970. “3-D lnfonnatién from Orthophotos,”
Photogrammetric Engineering, April, pp. 365-376.



140

{91] T. A. Hughes, A. R. Shope, and F. S. Baxter, 1971. "USGS Automatic Orthophoto System,” .
Photogrammetric Engineering, Vol. 37, pp. 1055-1062,

[92] A. Beyer, 1972. “Zur Erfassung flichen Gelandes durch willkiirlich verteilte Hohenpunkte,”
Vermessungsiechnik, Vol. 20, No. 6, pp. 204-207.

[93}T. K. Peucker, and N. Chrisman, 1975. “"Cartographic Data Structures,” The American
Cartographer, Vol. 2, No. 1, April, pp. 55-69.

[94] E. Keppel, 1975. "Approximating complex surfaces by triangulation of contour lines," /BM
Journal of Research and Development, January,

[95] T. K. Peucker, R. J. Fowler, J. J. Little, and D. M. Mark, 1976, "Digital Representation of
Three-Dimensional Surfaces by Triangulated Irregular Networks (TIN),” Technical Report

No. 10 (Revised), Department of Geography, Simon Fraser University, Baraaby, B. C,
Canada.

[96] A. K. Lobeck, 1924. Block Diagrams, New York: John Wiley. Reprinted by
Emerson-Trussell, Amherst, Mass. in 1958,

{97] M. Schuster, 1954. Das Geographische und Geologische Blockbild, Berlin: Akademie Verlag.
[98] D. A. Goosen, 1962. "Blockdiagrams.” ITC Information, Delft, Netherlands, No. 3, Spring.

[991 G. F. lenks, and D. A. Brown, 1966. “Three-Dimensional Map Construction," Science,
Vol. 154, No. 3750, 18 November, pp. 857-864.

[100] B. Kubert, J Szabo, and S. Giulieri, April 1968. "The Perspective Representation of
Functions of Two Variables," Journal of the A Vol. 15, No. 2, pp. 193-204. ‘

{101] D. Doughs 1971. "VIEWBLOK: A computer program for constructing petspecnve view
block diagrams,” Revué de Geographie de Mamreal Vol. 26, pp. 102-104.

[102] T. 3. Wright, 1973, "A Two-Space Solution to the Hidden Line Problem for Plotting
Functions of Two Variables," IEEE Trans. on Compuzers Vol. C-22, No. 1, January,
pp 28-33.

[103} C. Wyhe, G. Romney, and D. Evans, 1967. "Half-tone Perspective Drawings by Computer,”
in Fall Joint Computer Conference, pp. 49-58.

[104] A. Appel, 1968. "Some Techriques for Shaded Machine‘Rendering of Solids,” in Spring
Joint Computer Conference, pp. 37-45.



" 141

© [105]1. E. Wamock, 1969 "A Hidden-surface Algorithm for Computer Generated Half-tone
' Pictures," TR 4-15, Dept. of Computer Science, University of Utah, Salt Lake City, Utah.

[106] G. S. Watkins, 1970. "A Real-time Visible Surface Algorithm,” Report UTEC-CSC-70-101,
June, Dept. of Computer Science, University of Utah, Salt Lake City, Utah.

{107] W. ]. Bouknight, September 1970. A Procedure for Generation of Three-Dimensional
Half-toned Computer Graphics Presentations,” Communications of the A.C.M., Vol. 13,
No. 9, pp. 527-536. '

[108] R. A. Goldstein, and R. Nagel, 1971. "3-D Visual Simulation," Simulation, Vol. 16,
pp- 25-31.

[109] H. Gouraud, June 1971. "Computer Display of Curved Surfaces,” IEEE Trans. on
Compuiers, Vol C-20, pp. 623-629.

{110 M. E. Newell, R. G. Newell, and T. L. Sancha, 1973. "A New Abproach to the Shaded
Picture Problem,” in Proceedings of the ACM National Conference, Boston, Mass. Vol. 1,
pp. 443-450.

f111] 5. Staudhammer, and D. J. Odgen 1975. "Computer Graphics for Half-tone
“three-dimensional Object Images,” Computers and Graphics, Vol. 1, No. 1, pp. 109-114.

[112] E. A. Catmull, 1975. “Computer display of curved surfaces,” in Proc. IEEE Conf. Computer
Graphics, May, Pattern Recognition and Data Siructures, los Angeles, (IEEE Cat.
No. 75CH0981-1C), pp. 11-17.

{113] Phong Bui-Tuong, 1975. "INumination for Computer-generated Images,” Communications
of the A.C.M., Vol. 1§, No. 6, June, pp. 311-317.

[114]J. F. Blinn, and M. E. Newell, 1976. "Texture and Reflection inA Compuiter Generated
Images," Communications of the A.C.M., Vol. 19, No. 10, October, pp. 542-547. '

[115]1. F. Blinn, 1977. "Models of Light Reflection for Computer Synthesized Pictures,” in
SIGGRAPH 77, Proceedings of the 4th Conference on Computer Graphics and Interactive
Techniques, A.C.M., pp. 192-198.

[116] 1. F. Blinn, 1978, "A Scan Line Algorithm for Displaying Parametrically Defined Surfaces,"
' in SIGGRAPH 78, Proceedings of the S5th Conference on Computer Graphics and [nteractive
Technigues, A.C.M..



142

[117]1J. H. Lambert, 1892. Photometria sive e de mensura de gratibus luminis, colorum et umbrae,
Eberhard Klett, Augsburg, 1760. Translated by W. Engelman “Lambert's Photometne.
Ostwald’s Klassiker der exacten Wissenschafien, No. 31-33, Leipzig,

[118] 'Abbe de Lacaille 1961 Traite d'optique sur la gradation de la lumiére, (Quvrage posthume
de M. Bouguer), L. F. Delatour, A Paris. Translated by W. E. K. Middleton Optical treatise
on the gradation of light, University of Toronto Press, 1961.

[119] E. Lommel, 1880. "Ueber Flourescence," Annalen der Physik, Leipzig, Vol. 10, pp. 449-472,

[120] H. Seeliger, 1888. "Die Photomune von diffus reflektierenden Flichen,” S. B. Bayer. Akad,
. Wiss, Vol. 18, pg. 20.

1211 A. Markov, 1924. “Les particularités dans le réflexion de la lumiére par la surface de la
lune,” Astronomische Nechrichten, Vol. 221, pp. 65-78.

{122] E. Schonberg, 1925. "Untersuchungen zur Theorie der Beleuchtung des Mondes auf Grund
’ photometrischer Messungen,” Acta Soc. Sci. Fennicae, Vol. 50, pp. 1-70.

{123} V. G. Fesenkov, 1929. "Photometric Investigations of the Lunar Surface." Astronomicheskii
Zhurnal, Vol. 5, pp. 219-234. Translated by Redstone Scientific Information Center, April
1968.

[124] M. Minnaert, 1941. "The Reciprocity Principle in Lunar Photometry,” Astrophysical Journal,
Vol. 93, pp. 403-410.

[125} V. A. Fedoretz, 1952. “"Photographic Photometry of the Lunar Surface,” Publ. Kharkov Obs.,
Vol. 2, pp. 49-172.

[126] M. Minnaert, 1961, "Photometry of the Moon," in Planeis and Saiellites, G.P. Kuiper, and
B. M. Middlehurst, (Editors) Univ. Chicago Press. Vol. 3, ch. 6, pp. 213-248.

{127} V. Fesenkov, 1962. “Photometry of the Moon,” in Physics and Astronomy of the Moon, Z.
Kopal, Ed. New York: Academic Press. pp. 99-130.

[128] B. W. Hapke, 1963. A Thcoretical Photometric Function for the Lunar Surface,” Journal of-
* Geophysical Research, Vol. 68, No. 15, August, pp. 4571-4586.

- [129)} B. Hapke, and H. Van Horn, 1963. "Photometric Studies of Complex Surfaces, with

Applications to the Moon," Journal of Geographical Research, Vol. 63, No. 15, August,
pp. 4545-4570,



143

[130] B. Hapke, 1966.‘ "An Improved Theoretical Lunar Photometric Function,” The Astronomical
Journal, Vol. 71, No. 5, June, pp. 333-339.

| {1311 W. E. Middleton, and A. G. Mungall, 1952. "The Luminous Directional Reflectance of
Snow," Journal of the Optical Saciety of America, Vol. 42, No. 3, pp. 572-579.

[132] M. Planck, 1959. The Theory of Heat Radiation, New York: Dover.

[133] P. Beckmann, and A. Spizzichnio, 1963. The Scattering of Electromagnetic Waves from
Rough Surfaces, New York: Pergamon Press.

[134]1K. E. Torrance, E. M. Sparrow, and R. C. Birkebak, 1966. “Polarization, Directional
Distribution, and Off-specular Peak Phenomena in Light Reflected from Roughened
Surfaces,” Journal of the Optical Society of America, Vol. 56, No. 7, July, pp. 916-925.

[135] K. E. Torrance, and E. M. Sparrow, 1967. "Theory for Off-specular Reflection from
Roughened Surfaces,” Journal of the Optical Society of America, Vol. 57, No. 9, September,
pp. 1105-1114,

[136] T. S. Trowbridge, and K. P. Reitz, 1965. "Average irregularity representation of a rough
" surface for ray reflection,” Journal of ihe Optical Society of America, Vol. 65, No. 5, May,
pp. 531-536.

[137} B. K. P. Horn, 1975. “Determining Shape from Shading," in The Psychology of Computer
Vision, P. H. Winston, Ed. New York: McGraw-Hill, ch. 4.

{1381 B. K. P. Horn, 1977. "Understahding Image Intensities,” Artificial Intelligence, Vol. 8,
No. 11, pp. 201-231. : '

= [139] B. K. P. Horn, and B. L. Bachman, 1978. "Using Synthetic Tmages to Register Real Images
with . Surface Models,” Communications of the A.C.M., Vol.21, No.1l, November,
pp. 914-924, » : :

~ {140] B. K. P. Homn, and R. W. Sjoberg, 1979. "Calculating the Reflectance Map," Applied Optzcs
Vol. 18, No. 11, June, pp. 1770-1779,

[141} R. J. Woodham, 1978. "Photometric Stereo: A reflectance map technique for determining
surface orientation from image intensity,” Image Understanding Systems and Industrial
Applications, in Proc. S.P.LE., Vol. 155 August.



144

{1421 F. E. Nicodemus, J. C. Richmond, and J. J. Hsia, 1. W. Ginsberg, T. L!mpem 1977.
"Geomeltrical Considerations and Nomenclature for Reflectance,” NBS Monograph 160,
National Bureau of Standards, U. S. Department of Commerce, Washington, D. C,
October. ' ‘

[143]F. E. Nicodémus, (Editor) 1976, 1977 & 1978. “Seli-Swudy Manual on Optical Radiation
Measurements," NBS Technical Notes 910-1, 810-2 & 9i0-3, National Bureau of Standards,
U. S. Department of Comimerce, Washington, D. C.

[144] H. C. Babcock, 1970. "Evaluation of a Stereocompi)aﬁon Digitizer,” in Congress on
Surveping and Mapping, 30th Annual Meeting, pp. 338-347. .

[1451 E. 1. McCartney, 1976. Oprics of the Avnosphere.  Scatiering by Molecules and Porticles,
New York: John Wiley.

'[146}'8. D. Conte, and C." de Boor, 1972, Elementarv Numerical Analysis, New York:
McGraw-Hill. '

- [1471R. W. Hamming, 1962, Numerzcal Methods for Scientists and Engzreers New York:
' McGraw-Hill.

" [148] R. D. Richtmeyer, and K. W. Morton, 1567, Difference Methods for Initial-Value Problems,
New York: John Wiley, pp. 136-143.

" [149] F. B. Hildebrand, 1956, 1974, Introduction to Numerical Analysis, New York: McGraw-Hill,

{150} P. M. Bridge, and J. L. Inge, 1972. “Shaﬁed Relief of Mars,” Atlas of Mars, MH 25 M IR,
JPL Contract WO-8122, USGS, Department of the Interior,

{]51]"]‘. Rindfleisch, 1966. "Photometric Method for Lunar Topography,” -Photogrammetric
Engincering, Vol. 32, pp. 262-276.

11521 W. Banwel, 1973. "Der Reproduktionsweg vom einfarbigen Relieforiginal zur mehrfarbigen
Reliefkarte," International Yearbook of Cartography, Vol. 13, pp. 134-136.

~ {1531 A. Delucis, 1971, "The effect of shaded relief terrain representation on map information -
accessibility, in American Congress on Surveying and Mappmg, 31st Annual Meeting,
" Washington, D.C. , pp. 641-657.

{1541 J. Neumann, 1973. “Begriffsgeschichte und Definition des Begriffes *Kartographische:
Generalisierung’,” International Yearbook of Cartography, Vol. 13, pp. 59-67.

{155} F. Topfer, (detor) 1974. Kartographische Generalisierung, Geographlsch-Kartographnsche
Anstalt, Gotha, Leipzig.



