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ABSTRACT. The automation of map design is a challenging task for both researchers and design-
ers of spatial information systems. A main problem in automation is the quantification and for-
malization of the properties of the process to be automated. This article contributes to the
formalization of some steps in the processes involved in map design and demonstrates how the
Shannon information theory (Shannon and Weaver 1964) can be used to compute an evaluation
index of a map, i.e., a parameter which measures the efficiency of the map. Throughout this arti-
cle, the term “information” is mostly used in a narrow sense and the application of information
theory is restricted to the syntactic level of cartographic communication. Information sources for
map entropy computations are identified and elaborated on. A special class of map information
sources are defined and termed “orthogonal map information sources”. Further, a strategy to
consider spatial properties of a map in entropy computations is presented. At the end of the aru-
cle, some examples demonstrate how the channel capacity and other entropy related measures can
be computed and used to control automated processes for map design or map generalization.
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Introduction

ne of the main problems in the automa-

tion of cartographic design is quantifying

the efficiency of a map. In recent years
there has been considerable activity in related
fields such as the representation of cartographic
knowledge. The collection of articles in Butten-
field and McMaster (1991) covers some of this
research and gives valuable insight to the problem
of automation in cartographic design. There is
still a lack of fundamental theory, however, on
how to quantify the efficiency of cartographic
communication. For a time in the 1970s the
mathematical theory of communication (Shannon
and Weaver 1964), normally termed “information
theory,” inspired several research articles in car-
tography. The Shannon information theory also
became popular in several other disciplines (for
example engineering, psychology, and biology) in
the first 20 years after its introduction, but it
never reached a high level of sophistication out-
side electronic communications. Moles (1966)
points out that the most obvious failure of the
theory in its simplest form, when applied to psy-
chology, is that it appears an atomistic theory
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which tends to explain reality by decomposing it
into simple elements. In the 1970s there were
several critics of the cartographic relevance of the
communication paradigm of Shannon and
Weaver. Head (1991) points out that how to quan-
tify the information itself was never fully
understood:

It came to be recognized, however, that map
readers often seemed to get things from
map reading that were not consciously
designed-in by the cartographer, and this
made measurement of information loss a
fuzzy business (Head 1991, 238).

Neumann (1994, 26) notes the following criti-
cism made in the 1970s:

The communication concept had one weak
point—the use of information theory was
mechanically conditioned by the application
of Shannon’s theory of communication
(Shannon and Weaver 1964). Consequently,
it was criticized by Salichtchev (1973), Rob-
inson and Petchenik (1976), and other
authors in the 1970s. The critcs were par-
ticular to point out that the conventional
process of communication, accompanied
with losses in transmitted information, could
not be used as a model of the cartographic
process which, in contrast, produced an
increase in the amount of information.
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The type of criticism cited reveals the limitations
of Shannon information theory and the problems
that arise when attempting to apply it to map evalua-
tion. The present article shows, however, that when
Shannon information theory is applied to the syntac-
tic component of a map, the theory can be used in
map design and cartographic generalization with a
potentially significant degree of success.

I will comment on the criticism of the carto-
graphic relevance of information theory on the
basis of the syntactic, semantic, and pragmatic
aspects of communication. Klir and Folger (1988,
188) describe these three aspects:

1. the syntactic aspect, i.e., the relationship among
the signs that are employed in the
communication;

2. the semantic aspect, i.e., the relationship be-
tween the signs and the entities which they
represent, that is, the designation of the
meaning of the signs; and

3. the pragmatic aspect, i.e., the relationship be-
tween the signs and their application.

Shannon and Weaver (1964) distinguish these
aspects of communication. In’ their terminology
the three aspects are termed levels of communica-
tion problems and are given the abbreviations:
level A (syntactic), level B (semantic), and level C
(pragmatic). Shannon and Weaver emphasize that
at level A they use “information” in a special sense
that must not be confused with its ordinary usage.

In particular, information must not be con-
fused with meaning (1964, 8).

To be somewhat more definite, the amount
of information is defined, in the simplest
cases, to be measured by the logarithm of
the number of available choices (1964, 9).

It may be that some of the earlier criticism of
the application of information theory would be
met if we were more distinct about the three levels
of communication problems, and if we evaluated
the relevance of information theory to each of the
levels, specifically. It is hoped that this article will
demonstrate that information theory provides a
sound basis for map evaluation when applied to
the syntactic level of cartographic communication.
Any attempt to apply information theory to the
semantic level or the pragmatic level of carto-
graphic communication, on the other hand, will
meet the problems pointed out by Head (1991).

Robinson and Petchenik (1976, 41) correctly
point out that the positional factor of a map must

be considered if information theory is to be ap-
plied to cartography. The cartographic applica-
tion of information theory of the 1960s and 1970s
did not emphasize the positional component of a
map and this is probably what brought informa-
tion theory into discredit. This article demon-
strates how different types of spatial information
sources may consider the spatial component of a
map in entropy computations.

Knopfli (1983) explains the difference between
aerial photos and maps in terms of information
theory and shows that the amount of information
in aerial photos, as well as maps, can be reduced
by misinterpretations of the relevant messages.
He nicely demonstrates the effect of distorted
(noisy) information transmission and sets up two
steps in order to reduce the loss of relevant infor-
mation (1983, 207). These two steps are:

1. omit the irrelevant characteristics, and
2. strengthen the relevant characteristics.

These rules can be reformulated to:

1. not overloading the map with information (in
this context information has the narrow
meaning as earlier defined), and

2. maintaining a sufficient “visual distance”
between the map symbols to make them dis-
tinguishable (in this context “visual distance”
can be Euclidian distance in the map plane or
distance defined in the domain of the visual
variables such as color, shape and size).

Even if these rules are simplistic and general,
they are very important considerations in map
design. Information theory offers a mathematical
basis which takes into account these rules, since
the idea is to compute the efficiency of any kind
of communication as the difference between the
variation within the message and the amount of
potential misinterpretation. This difference is
termed wuseful information and can be expressed as:

R=H(X)-Hy(X) (1

The mathematical basis for Equation (1) is
explained in the Appendix. Shannon and Weaver
(1964) term H(X) the entropy of the information
source and Hy(X) the equivocation of the informa-
tion source. The capacity C of a noisy channel
corresponds to the maximum rate of transmission
and is defined as:

C = max [H(X) - H (X)) (2)
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A cartographic interpretation of Equation (2) can
be done as follows:

rule (1) "not overloading the map with informa-
tion“ is considered by the max-
operator, whereas

rule (2) “maintaining a sufficient visual distance
between the map symbols to make
them distinguishable”, is considered
by the expression —H y(X).

The present article is concerned with the appli-
cation of Shannon information theory to cartogra-
phy, but restricted to communication problems at
level A, l.e., the syntactic aspect of cartographic
communication. Since levels B and C make use of
the signals at level A, an efficient coding at level A
is obviously a basis for efficiency at the other two
levels. Map evaluation at the syntactic level should
be an important step in any map design process.
If information theory is to be applied to levels B
and C, on the other hand, we must consider the
purpose of the map and the meaning of the map
symbols. The problems that raises are outside the
scope of this article.

Three issues are addressed here. The first is
the identification of the information sources of a
map, i.e., what are the events and characteristics
which the entropy computations should be based
on? The second is how the spatial component in
entropy computations should be considered. The
last relates to the computation of the channel
capacity in Equation (2). At the end of the article
some examples demonstrate the application of
information theory to map design. Finally, some
important properties of Shannon entropy are
summarized in the Appendix.

Previous Attempts at
Applying Communication
Theory to Cartography

Up to now there are few presented articles which
demonstrate the utility of Shannon information
theorv in cartographic communication. If we turn
to digital signal engineering, on the other hand,
we find that information theory has become a
sub-discipline to which entire journals and sympo-
sia are dedicated. A short survey of articles deal-
ing with information theory in cartography
follows.

Sukhov (1967) proposes an atomistic method
to compute the entropy of a map. This is based on
a method which breaks a map into discrete

elements. A statistical sampling method is used
for selecting typical unit areas from the map for
measuring the entropy. The method is applied to
different subsystems of the map, i.e., to different
themes such as hydrography, relief, and roads.
Finally, the map entropy is computed as the sum
of the entropies of its different subsystems. Suk-
hov distinguishes the significance of the correla-
tion between the subsystems (1967, 214). The
subsystems of the study were weakly correlated
(1967, 214), which gave Sukhov the basis for
using the joint entropy computation in Equation
(15) (Appendix). Sukhov’s contribution gives
insight into the significance of correlation in the
computation of the joint entropy of different
information sources.

Two articles by Knopfli explain some features
of cartographic generalization in terms of Shan-
non entropy. The first (Knopfli 1980) demon-
strates that some information can be derived from
the structure of what is termed “the embedding
space” using inductive reasoning. For example, if
a city 1s located on both sides of a river, we can
conjecture that there must be a bridge between
the two parts of the city. Since the no-bridge case
would be very unusual, its information value is
very high. The information that there is a bridge
has a lower information value than the informa-
tion that there is no bridge. This example demon-
strates that spatial correlation and spatial context
should be considered in the entropy computa-
tions. In the second article (Knépfli 1983), the
difference between aerial photographs and maps
are explained in terms of information theory. The
article demonstrates very clearly that the scatter of
the relevant messages (noise) leads to loss of
information.

It is always claimed that aerial photographs
contain much more information than maps.
Since 1 have dealt with the production of
topographic maps from aerial photos for
years, I am familiar with the advantages and
disadvantages of both products and have
never agreed with this assertion (Knopfli
1983, 177).

Bjgrke and Aasgaard (1990) propose informa-
tion theory as a part of the concept that they call
“cartographic zoom.” This is a real-time concept
which aims to generate map versions adjusted to
the dynamic change of map scale on a computer
screen. Information theory is described as a tool
to measure the amount of information on a map
and 1t is proposed that this be integrated into a
subsystem which controls the number of map
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Figure 1. Different patterns of binary images. The patterns
made by the two images are different, but the number of
black pixels is equal in both.

symbols and their visibility. They emphasize that
they use the term “information” in a narrow
sense, and that their use of “information” has no
connection with “meaning” (1990, 346). It seems
clear, therefore, that their application of informa-
tion theory is restricted to the syntactic level of
information, i.e., level A according to the termi-
nology of Shannon and Weaver.

Bjgrke (1992) demonstrates how information
theory can be used to control the generalization
process in the two cases:

1. the selection of the number of classes in
choropleth raster maps, and

2. the selection of parameter values in auto-
mated line generalization.

In both cases the channel capacity of the maps was
computed. In the first case the borders between
the raster elements (pixels) were selected as events
for the entropy computation. An investigation of
some subjects gave the probability that the differ-
ent gray values were misinterpreted. Then the
channel capacity of a random and a correlated
choropleth map was computed. From this compu-
tation an optimum number of classes was derived
for the two maps. In the second case, the angular
change of the line to be generalized served as a
basis for the entropy computation. Based on a
mode! of the minimum separable distance be-
wween the events, an optimum value of the line
generalization parameter was derived. Bjgrke and
Midtbg (1993) go further and apply information
theory to contouring from digital elevation mod-
els (DEMs). In this case the underlying terrain
model, not the contour lines themselves, was
simplified and an optimum generalization pa-
rameter value was derived. An information theory
method to compute an optimum contour interval
is also proposed loosely in this article.

Bjgrke (1994) introduces the concept of differ-
ent types of entropies in a map and proposes a

model for map design based on information the-
ory. At the same time Neumann presents an arti-
cle where the topological entropy of a map is
focused (1994). The topological entropy of Neu-
mann is computed from dual graphs (Region
Adjacency Graphs). Bjgrke (1994) defines an
arrangement-entropy which also has a topological
aspect, but the entropies of Neumann and Bjgrke
are different. The present article adopts the ideas
of Bjgrke et al. (1990; 1992; 1993; 1994). Earlier
findings will be substantially deepened, and new
ideas and perspectives are added.

Properties of the Syntactic
Component of a Map

Spatial Correlation

When applying Shannon information theory in
cartography, we face the problem of how to deal
with spatial correlation. An aspect of the problem
is demonstrated in Figure 1. Both the images in
the figure consist of nine black and 55 white pix-
els, but the patterns in the two images are differ-
ent. If we calculate the entropy of the two images
on the basis of counting the number of black and
white pixels, the entropy is computed as:

Ha(0 = HyX) =~ - 1ogy o~ 22 - log, 22 = 0.586

64 64 %254
where
% is the probability of finding black pixels, and

Qr

is the probability of finding white pixels.

<M |U‘
MY

To an observer, the pattern of image (b) in
Figure 1 looks more ordered than the pattern of
image (a), but we have computed identical values
for their entropies. The reason is that the events
in the message are spatially correlated and we
have not modeled that correlation. The spatial
correlation between neighboring pixels of an
image can be taken care of by replacing the values
of the pixels by their differences (Gatrell 1977,
Weber 1980; Bjgrke 1992 and 1993). Based on
this idea, the previous entropy computation will
be reformulated. If two neighboring pixels have
the same color, we define their difference to be
positive. Otherwise, if the pixels have different
colors, their difference is defined as negative.
According to this strategy, the entropy of a binary
image can be defined as:
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Figure 2. Entropies of the map plane. Image (a) and image (b) demonstrate topological entropy, image (c} and (d) demon-
strate the concept of metrical entropy, whereas image (e) and {f) demonstrate positional entropy.

HX)=—p" -logyp™ —p~ - logyp~ 3

where

p*t is the probability of (black,black) and
(whaite,white) neighbors, while

p~ is the probability of (black,white) and

(whate,black) neighbors.

Applying this technique to the images of Figure
1, we get Hy(X) = 0.825 and H,(X) = 0.301. Image
(b) now has lower entropy than image (a) which
puts the images into a sequence corresponding to
our visual judgment. The difference technique
described above, in the context of point symbol
maps, is elaborated on in the next section. The
technique is also demonstrated in the choropleth
map example later in this article.

Gatrell (1977) proposes computing the entropy
of a binary image as a weighted mean value of the
entropy at the different orders of neighborhood.
The computation can be done by applying Equa-
tion (3) to the different orders of neighborhood.
~ We can set up the equation:

n

HX)= Z wk) HX), 4
k=0
where
w(k) 1s a weight function, and
k is the order of neighborhood.

Equation (4) has some conformity with the joint
entropy in Equation (15) (Appendix). If

w()=w(@)==wk)=1 and the different levels
are independent in the probabilistic sense, the
equation corresponds to the joint entropy of the &
information sources. The weight function is used
to control the size of the neighborhood to be
evaluated. A high value of & corresponds to a
global neighborhood, while a small value corre-
sponds to a local neighborhood.

Map Information Sources

Information theory deals with variation. There-
fore, when applying the theory to cartography we
should carefully identify the elements which make
up the variation of a map. As stated earlier, this
article deals mainly with communication problems
at the syntactic level of cartographic communica-
tion. Therefore, our identification of information
sources concerns only the syntactic properties of
the map. For the coming discussion we need a
definition of the terms map entity and map infor-
mation source.

Definition 1

A map enlity can be a map symbol, a part of a map
symbol, groups of map symbols, an attribute of a map
symbol, or a derived characteristic of a map which can
serve as an entity for entropy computations.

Definition 2

A map information source, denoted by (X, C), is an
object which contains a set X of map entities and a char-
acteristic C of them which make up their variation.
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Figure 3. A point symbol map and its Thiessen polygons.

The visual variables identified by Bertin (1981)
will serve as a basis for our classification of map
information sources. According to Bertin, the
variables which are used to manipulate the map
symbols are: X,Y (the two dimensions of the
plane), size, value, texture, color, orientation, and
shape. Bertin operates with two components of
the map plane, the X and Y co-ordinates. In en-
tropy computations it 1s more appropriate to
distinguish between three components of the map
plane as illustrated in Figure 2. A first entropy is
derived from images (a) and (b) in Figure 2. From
a visual point of view it is clear that in Figure 2,
map (a) is more ordered than map (b), but the
number of different map symbols and the (X,Y)
positions occupied by the set of symbols are equal
in both the maps. The entropy of the kind consid-
ered in images (a) and (b), will be termed topologi-
cal entropy.

Definition 3
The topological entropy of a map considers the topologi-
cal arrangement of the map entities.

A second entropy which can be derived from
images (c) and (d) in Figure 2 is the metrical en-
tropy of a map.

Definition 4

The metrical entropy of a map considers the variation of
the distance between the map entities. The distance is
measured according to some metric.

A third type of entropy which can be derived
from images (e) and (f) in Figure 2, is positional
entropy.

Definition 5

The positional entropy of a map considers all the occur-
rences of the map entities as unique events. In the spe-
cial case that all the map events are equally probable

H(X) =logyn

where
n is the number of entities.

The term positional entropy is motivated from
its relation to the number of positions occupied by
the map entities. If we assume that each map
entity occupies one position, the positional en-
tropy is simply computed from counting the num-
ber of map entities. Our definition of topological
entropy and metrical entropy correspond to the
definitions of Bjgrke (1994) while the definition of
positional entropy corresponds to his definition of
density entropy.

The computation of topological entropy and
metrical entropy of the point symbol maps in
Figure 2 requires a spatial concept. There may be
several strategies which can be applied to this, but
I propose a method similar to that used for the
binary image case in Figure 1. Imagine a point
symbol and some neighboring symbols. We will
define the visual area of a point symbol as its Thi-
essen polygon. Since a Delaunay triangulation is
the dual of a set of Thiessen polygons (Lee and
Schachter 1980), we will base the neighborhood
definition in a point symbol map on a Delaunay
triangulation. This idea is demonstrated in Figure
3. A Thiessen polygon is constructed around each
map symbol. Therefore, the map symbols are
nodes in a network created by a Delaunay triangu-
lation. Given two nodes in the network created by
the Delaunay triangulation, the order of the
neighborhood is computed by counting the num-
ber of edges on the shortest path, by the number
of links between the points considered. For exam-
ple, point (b) is a 1st order neighbor of point (a),
whereas point (c) is a 2nd order neighbor of point
(a). Since we have a strategy to define neighbors,
we can apply the difference technique of the bi-
nary image in Figure 2. The topological entropy
1s based on computing the probability of different
types of binary relations between the map sym-
bols. In Figure 2, for example, we get the set E of
entities (relations):

Ejp Eyp Eiz Eny
Eyp Egy Egs Egyg
Egp Esy Egs Esq
Eqy Eq9 Eyz Egg

Vol. 23, No. 2

83



where the indices 1,2,3,4 represent the four dif-
ferent map symbols in images (a) and (b).

The definition of the entities in Equation (5) is
more complete than the definitions in Equation (3),
since in Equation (5) the symmetry (black,white),
(white,black) and (black,black), (white,white) is regarded
as distinct events. If the 0-th order neighborhood is
only considered, we get the subset:

E®={E|| ,E93,E33,E44} (6)

which corresponds to the-selection of entities
proposed in Knépfli (1983). Applying the method
considered to different orders of neighborhood,
we get a set of entropies. A mean value for the set
can be computed as a weighted sum of the en-
tropies at different orders of neighborhood
(Equation (4)). For the metrical entropy of the
maps in Figure 2, we can simply calculate the
Euclidian distance between the neighboring map
symbols and apply the distance differences rather
than the distance values themselves as entities. As
with the topological entropy, the metrical entropy
can also be computed at different orders of
neighborhood.

Equation (5) shows a relation between topologi-
cal entropy and the visual variable shape. In this
case the differential variable shape does distin-
guish between the sixteen elements of set E. To be
more definite, the visual variables: size, value,
texture, color, orientation and shape belong to
the attribute domain of the map. A class name for
a specific group of map information sources will
be introduced.

Definition 6

Map information sources are orthogonal if none of the
information sources can be derived from combining
some of the other information sources.

Definition 7

The topological, metrical and positional entropies have
orthogonal map information sources; which are infor-
mation sources of the spatial domain of a map.

Definition 8

The visual variables as: size, value, texture, colour,
orientation and shape have orthogonal map information
sources; which are information sources of the attribute
domain of a map.

Similarity Grade, Transition Probability
and Equivocation

If the map user is uncertain about the map sym-
bols actually received, this uncertainty is defined

as equivocation (Knopfli 1983). Knopfli clearly
shows that the “visual distance” between the map
symbols is important for the perception of the
symbols, i.e., at a small visual distance there is a
chance that one symbol is interpreted as another
symbol. For example, if two lines 4 and B are very
close to each other, it may be difficult to visually
separate the one line from the other. Therefore,
some parts of line A may be interpreted as line B.
Another example is that if two symbols have simi-
lar colors, the color of one symbol may be inter-
preted as the color of the other symbol. If the
map designer planned to distinguish between the
two colors, the similarity in color may cause con-
fusion for the map reader. The perceived similar-
ity between map symbols calls for a definition:

Definition 9

Let x and y be map entities. A function p(y,x) which
defines the grade of perceived similarity between x and y
will be termed the similarity function. The similarity is
measured on the interval [0,1] of real numbers. If x
and y are clearly separable, the similarity grade is 0. If
x and y are completely unseparable, the similarity grade
is 1. Generally, u(y,x) # p(x,y).

The computation of the similarity function for
a particular map information source is not a triv-
ial task because the perceived similarity between
map entities may be influenced by several types of
phenomena. For example, Gilmartin (1981)
shows that the perceived size of a circle may be
biased by its map context and Robinson et al.
(1995, 398) point out that the perceived size of a
line is influenced by its background color. Meth-
ods of computing the similarity function and of
computing which perceptual phenomena to con-
sider are mainly outside the scope of this article.

In equivocation computations we need to know
the transition probabilities, i.e., the conditional
probabilities in Equations (11) or (12) (Appendix).
Similarity grade and transition probability are
related to each other, but they are different. Our
definition of the similarity function corresponds
to the definition of the membership function in
fuzzy set theory (for an explanation of fuzzy set
theory, see, e.g., Klir and Folger (1988)). In fuzzy
set theory the membership funciion assigns a
value to the members of the set. The membership
function by which a set A is defined has the form

g X —[0,1]
where

[(0,1] denotes the interval of real numbers
from 0 to 1, inclusive.
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Figure 4. Similarity grade and transition prbbability {condi-
tional probability).

The grade of membership of an element x in 4 is
written as p4(x). Sometimes p,4(x) is termed the possi-
bility that x is a member of A. The concept of possi-
bility and probability are both used to represent and
manipulate imprecision or uncertainty. In everyday
speech the terms possibility and probability are
sometimes used interchangeably. There is a funda-
mental difference between possibility and probabil-
ity, however. For example, the probabilities must
sum to 1 whereas the possibility values are not re-
stricted in such a way.

Consider a set X of map entities and a set Y of
perceived map entities and the relation R(X,Y) de-
fined by the Cartesian product X x Y. Formally,
XxY={(x,5) | xe Xandy € X}. Let every wple (x,)
of the relation be assigned a similarity grade, i.e., the
tuples may have varying degrees of membership
within the relation. Since a map entity should be
similar to itself by the maximum rate of similarity,
the wple (x,y) is given the membership grade 1 if
x=y. From R(X,Y) we select the similarity class
x x Y= {(x,5) |y e Y} and compute the class sum
Zyey u(y | x . Our definition of similarity class has the
properties of similarity class in fuzzy set theory. In
fuzzy set theory a similarity class is defined as a fuzzy
set in which the membership grade of any particular
element represents the similarity of that element to
the element x (Klir and Folger 1988, 83). The map-
ping from grade of similarity to transition probabili-
ties {(conditional probabilities) can be done for each
similarity class as:

POy | x)= E;%foreacher (7
where the notation p(y lx) is equivalent to the
notation u(y,x) and should be read as: the grade
of membership of the relation from x to y.

Applying Equation (7) to all the classes of X
ensures that:

2 p(ylx)= for each 1x € X
yet

For example, consider Figure 4 and the two
map symbols x, and x,. The grades of similarity
o1 lx)=  and p@slx;)=02 are mapped to
conditional probabilities as:

1

-1 . 025 _9
p(y1|x1)—1+0'25 0.80and p(yglxy) 0.2

1+0.25
Equation (7) has, in the worst case, the compu-
tational effort 7= 0(712) when applied to all simi-

larity classes of X (n is the number of elements of
X). Usually, the conflict between map entity x and
its neighboring map entities is limited to the
neighbors inside a small region around x. There-
fore, we can substitute Y in Equation (7) with

Yio) = {y € Yy inside s(x)}

where
5(x) defines a search region around x.

The computation of entropy, equivocation and
useful information will be demonstrated from the
transition probabilities in Figure 4. We assume
that the probabilities of the two map entities x,
and x, are p(x1)= 0.3 and p(x9)= 0.7. Then the
probabilities of the perceived map entities y, and
¥, are computed as:

p(1)=0.3-0.8+0.7-0.375=0.503 and
p(v9)=0.3-0.2+0.7-0.625 = 0.497

As a control, p(y1) +p(ye) = 1. . The entropv of
the perceived map entities is computed from
Equation (9) (Appendix):

H(Y)=-0.50310g,0.503 - 0.497 log,0.497 = 0.99997

The equivocation is computed from Equation
(12) (Appendix). The summations will be broken
into small steps which makes it easier to interpret
the equation. The uncertainty in the perceived
entities when entity x, 1s sent is:

H(Y1x;)= -0.810g,0.8-0.2l0g,0.2 = 072193

The uncertainty in the perceived entities when
entity x, is sent is:

H(Y1xy)=0.375log,0.375 - 0.625 log,, 0.625 = 0.95443
The mean uncertainty in the perceived map is:
H(Y1X)=0.3-0.72193 + 0.7 - 0.95443 = 0.88468

Finally, the useful information is computed
from Equation (17) (Appendix):
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Map design based on information theory
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=

Map creation

Select rules for map design
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semantic and pragmatic

aspects considered.

Map evaluation
only syntactic aspects considered

ELeS e
Source model

Figure 5. Map design
based on information
theory.

iﬂdex

R=H(Y)-HY|X)=0.99997 - 0.88468 = 0.11529

Since we have a noisy channel, the entropy of
the information source is different from the en-
tropy of the received signals, i.e., HX) # H(Y).
The entropy H(X) of the information source is
-0.3log,0.3-0.7log,0.7 = 0.88129 whereas the en-
tropy H(Y) of the received signals is 0.99997.

Map Design Based on
Information Theory

Bjgrke (1994) presents a conceptual model for a
map design process which incorporates informa-
tion theory. The model has two main parts: a map
creation process and a map evaluation process. The
map creation process creates maps based on
knowledge about cartographic design while the
map evaluation process evaluates syntactic aspects
of the maps based on information theory. The
map evaluation process is composed of three
operational areas. The three areas first outlined in
Bjgrke (1994) are renamed:

1. source model,
2. stochastic model, and
3. entropy model.

The source model describes which map infor-
mation sources are to be selected, while the

stochastic model describes their stochastic proper-
ties as spatial correlation and transition probabili-
ties. Finally, the entropy model uses the source
model and the stochastic model to compute dif-
ferent entropy measures as: R, H(Y) and H(Y|X).
The map design process considered is presented
as the data flow diagram in Figure 5. The dia-
gram emphasizes that the map evaluation process
considers only syntactic aspects of a map. Despite
Shannon and Weaver’s (1964, 26) assumption that
information theory can be applied to all three
levels of communication problems, the proposed
map evaluation process is limited to only syntactic
aspects of map information within the scope of
this article.

An automated system based on the proposed
map design model is a stepwise procedure. The
map creation process generates different maps
and thereafter the map evaluation process com-
putes entropy measures for the maps. The infor-
mation measures (map indexes) are sent to the
map creation process, which enables it to draw
conclusions about how to alter the map design in
order to get more efficient maps (this is elabo-
rated on in the examples at the end of this aru-
cle). The process cycle of map creation and map
evaluation terminates when the map index re-
quirements are met.

McMaster and Shea (1992) describe a map
generalization model which breaks the generaliza-
tion process down into three operational areas:
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Figure 6. Two dot maps with different number of entities
per dot.

1. why to generalize,
2. when to generalize, and
3. how to generalize.

Information theory cannot show how to gener-
alize a map, but it can be applied for a better
understanding of why and when to generalize.
The three sub-processes of map evaluation in
Figure 5 mostly cover the second operational area
(when to generalize) of McMaster and Shea.

The relation between the two main processes in
Figure 5 can be elaborated on in the context of a
map evaluation method described by Morrison
(1984). Morrison analyses the symbolization used
on general-purpose atlas reference maps from a
semiotics point of view. The simplest definition of
semiotics is perhaps “the study of sign systems”
(Head 1991, 240). In order to systematically
evaluate the maps, Morrison (1984) states their
purpose and concentrates on the semantic and the
pragmatic levels of map communication. The
application of information theory in the proposed
map design process (Figure 5) can coexist with
Morrison’s evaluation strategy. Since the level A
evaluations of the information theory method and
Morrison’s method evaluate different components
of a map, they should not be set against each
other. With reference to the proposed map design
model, Morrison’s evaluation method should be
applied in the map creation process. Accordingly,
information theory evaluations of the syntactic
map component together with the map creation
process as a whole take into account all three
levels of communication problems; syntactic,
semantic, and pragmatic.

Examples

The examples given here demonstrate the appli-
cation of information theory to map design.
These examples raise several research issues

which relate to map perception. But, in order to
keep the focus on the application of information
theory, detailed discussions of map perception are
outside the scope of this article.

Abbreviations (Top, Met, Pos) are used for
topological, metrical, and positional entropies
respectively (Definitions 3, 4, and 5). A map infor-
mation source (Definition 2) for a topological en-
tropy will be written as (X, Top) for example. The
different entropy measures R(X), H(X) and
H(Y1X), which are used in the examples, are
explained and elaborated on in the Appendix.

Dot Map

Dot maps are often used to show the spatial distri-

‘bution of discrete geographical point entities. The

traditional design rules of dot maps include:

1. selection of the dot size, and
2. selection of the number of events per dot.

Figure 6 shows two dot maps and demonstrates
the significance of the second design rule, since
map (a) has a lower number of entities per dot
than map (b). The evaluation model proposed
does not consider the spatial correlation of the
dots. Therefore, a rather simple model can be set

up.

Design Goal

We assume that process map creation (Figure 5)

has set up the following design goals:

1. make the number ¢ of events per dot as small
as possible, i.e., as many dots as acceptable to
visual perception; and

2. the preferable dot diameter should be §,,.

Source Model
Select the map information source:

(X, Pos)
X = {x!element xis a dot}

L.e., X is the set of all dots on the map.

If aspects of spatial correlation are to be con-
sidered in the map evaluation process, an infor-
mation source for the metrical entropy can be
selected as a second information source. In that
way we can compute a map index from two or-
thogonal information sources (Definition 6):

1. metrical, and
2. positional.

Vol. 23, No. 2

87



-
py Linear similarity w Weight function
function for dot map for dot size
1.0
d S
So

Figure 7. Functions for dot map design.

Stochastic Model
The dots are assumed to be equally probable, i.e.,

pl) = X}- foreachx e X

X

where
N, 1s the number of elements in X.

The transition probabilities are not as easily
derived. Let us assume that we can set up a model
so that the visual separation between two neigh-
boring dots x and y is a function of the distance
d(x,y) between them and the dot size S. Further,
let us assume that visual separation and visual
similarity are inverse quantities. Hence, the simi-
larity function (Definition 9) can be defined as
uix,y) =f(S,d(x,y)). An example of a linear simi-
larity function is given by Figure 7. In the figure
the grade of similarity u(x,y) =1 if d(x,y3) < 7, i.e,
when the dots are so close to each other that they
cannot be separated. If d(x,y) =2 T, the dots are
clearly separable and p(x,y) = 0. When the similar-
ity function is defined, the transition probabilities
which we need for the entropy computations can
be derived from Equation (7). The design of the
similarity function should consider the resolution
and the type of the output media, the color of the
dots and other parameters related to map percep-
tion. A more detailed discussion of this specific
topic is outside of the scope of this article.

Entropy Mode!

We assume a map creation process M(q,5) which
produces dot maps by varying the number ¢ of
events per dot and varying the dot size S. The
first statement of the design goal can be modeled
by max[R(X)!M(q, $)], which is the maximum
value of the useful information of map informa-
tion source under the constraint that the different
map alternatives are produced by M(q,S). The
second statement of the design goal can be satis-
fied by a weighted entropy computation. Hence,
the map index K can be computed from
K=uw(S)  R(X) where w(S) is a weight function

which takes the dot size as a variable. An example
of a weight function is given in Figure 7. From the
figure, we can see that the weight has its maxi-
mum value at the preferred dot size S, 1ie,
w(Sp)=1. There is no good reason to consider a
dot size greater than S, Therefore, the weight
function is designed so that w(8) =0 when § >§,.

Selection Criterion
Select the pair (g,5) which corresponds to the
maximum value of the map index, i.e.,:

Kmax = max [w(S) - R(X | M(q, $))]

where
R(X) is computed from Equation (17)
(Appendix).

In order to reduce the computational effort of
the process cycle, some strategy to eliminate maps
which are not candidates for the best solution
should be implemented.

Contour Map

An information theory approach to the selection
of an appropriate contour interval in contour
maps is proposed by Bjgrke (1993). The following
example expands this proposal.

Design Goal

Make the contour interval ¢ as small as possible,
i.e., as many contour lines as are acceptable to
visual perception.

Source Model
Select the map information source:

(X, Pos)
X={x|h(x)=nenH, Sne<Hmax an €I}

where

h(x) is the height value of contour
line x, and

are the minimum height and
maximum height on the map,
respectively.

Hmin and Hax

The model says that X is the set of contour
lines of a map with contour interval e.

Stochastic Model

It seems reasonable that a long contour line
should have a higher probability than a short
contour line. Therefore, we will select the model:
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Figure 8. Some maps created in the contour map experiment. Map scale 1:120 000.

px) = in(;c) 7o foreachx e X
where
{(x) is the length of contour line x, and
) computes the total length of all the

contour lines.

We assume that the similarity between neigh-
boring contour lines can be modeled by a function
of the type used in the dot map example, i.e., the
similarity between two lines is zero when the dis-
tance between the lines is greater than 7, With
the exception of parallel lines, the distance be-
tween two contour lines will vary. Therefore, the
similarity between two contour lines can be com-
puted as a mean value for different sections of the
lines.

Entropy Model

We select a map process M(e) which creates maps
with varying contour intervals under the con-
straint ¢ € E. The constraint can, for example,

limit e to integer values only or to real values
which are easy to remember. The design goal will
be evaluated against the useful information of the
maps, i.e., the map index is computed as K=R(X).

Selection Criterion
Select the contour interval which corresponds to

Kmax = max [R(X | M(e))]

An experiment based on the model above was
carried out on a digital terrain model (DTM) of a
small part of Norway. Table 1 summarizes the
experiment and shows the map index at different
contour intervals for some selected maps. Two of
the maps generated from process M(e) are shown
in Figure 8; ¢=100m and ¢=50m. The computa-
tions in Table 1 assume the map scale 1:120,000;
and a linear similarity function (Figure 7) with
T=0.1mm and T,=0.4mm. In this experiment,
the map index reached the maximum value 3.275
at contour interval 49m. One should note that the
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contour | map index entropy | equivocation
interval K=R(X) H(Y) H(Y|X)
m
150 2.254 2.254 0.000
125 2519 2.520 0.001
100 2.833 2.854 0.021
75 3.150 3.292 0.142
60 3.269 3.628 0.359
55 3.273 3.757 0.484
49 3.275 3.918 0.643
48 3.260 3.951 0.691
46 3.244 4.013 0.769

Table 1. Map index at different contour intervals. Map
scale 1:120,000

selection of parameter values in the similarity
function has great influence on the equivocation
computation. A more detailed discussion of this
issue related to map perception is outside the
scope of this article.

The experiment demonstrates a property of
the evaluation method. At a high value of ¢ the
contour lines can easily be separated, but there
are few of them. On the other hand, at a low value
of ¢ we have the opposite situation. Our model
considers this property of the maps and makes a
balanced selection between grade of entropy and
grade of equivocation. At the optimum value of e,
we have in Table 1 the equivocation 0.643 and the
entropy 3.918, which corresponds to the maxi-
mum value of K=3.918-0.643=3.275. Hence, a
property of our selection criteria is that the opti-
mum choice is not necessarily a map with zero
equivocation.

Line Generalization

An information theory approach to the selection
of appropriate parameters in line generalization
algorithms is presented in Bjgrke (1992). The
approach selects a source model based on angular
change. Saga (1994) discusses this approach and
demonstrates that it is too simplistic to base the
selection of generalization parameters on angular
change only. Saga (1994) shows that structural
information should be considered as well. The
complexity of line generalization and the fact that
a number of fundamental problems are still un-
solved are pointed out by several authors (Li and
Openshaw 1993; Wang and Muller 1993).

The present example deals with line simplifica-
ton. “Simplification is necessary to eliminate

unwanted details (such as small wobbles along
lines) that would be difficult or impossible to
perceive after scale reduction” (Wang and Muller
1993, 105). The problem we will put into focus is
that of how to set up a map evaluation model that
can assist us in the selection of an appropriate
grade of simplification. Our example will not be
connected to a specific line simplification algo-
rithm, since in principle any simplification algo-
rithm can serve as a basis for the map creation
process (Figure 5). The model is not complete
since it still is under investigation. It is hoped that
it can be looked upon as an innovative framework
for further research in this area. We assume the
following design goal:

Design Goal
Keep as much of the variation along the line as is
acceptable to visual perception.

Source Model

How to compute entropy measures for a line is
not a trivial task. Nevertheless, we will select the
two information sources:

(A,Met)
(X,Pos)
where
A = {aeR | element a is a break angle
of the digitized line}
X = {x | element x is a 8-circle of the
line}

The elements of X are some derived entities,
which we term 8-circles. The concept of d-circles is
demonstrated in Figure 9. The circles are of equal
size and distributed along the line according to
the following rules:

1. the circle centers are located on the line,

2. the distance d between the circle centers is

constant when measured along the line, and

3. the diameter § of the circles is equal to d.

Our &-circles have some similarity to e-circles in
Perkal (1966), since both are used to represent
some minimum quantities. The diameter of the
3-circles will influence the values of the entropy
measures. An appropriate circle size is supposed
to consider visual limitations as least perceivable
winding etc. The size of 3-circles as a specific topic
is an issue for further research.

Stochastic Model

Py= (pla) | 0O <a<2n)
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Figure 9. 3-circles of a line.

where
Py 1s a probability distribution
plx) = NI; foreachx e X
where
N is the number of 3-circles of the line.

x

The transition probabilities of the two informa-
tion sources can be computed using a strategy
similar to that of the dot map example.

Entropy Model

We select a map process M(t) which creates differ-
ent versions of lines by varying the generalization
parameter ¢{. The map index is computed as a
weighted sum for the R-values of the two map
information sources:

R=wg -R(A)+wx RX)

where
w represents a weight.

Since o is a continuous varying variable, the
entropy computation is based on:

n
H() = —st plalogyplo)da =~ - > pANogyp))

1=1

where the approximation of the integral is based
on dividing the continuous domain in n discrete
classes, i.e., 4 =0} _  A;.

Selection Criterion
We assume that the design goal is met at the
maximum value of the map index:

Kmax =max [wg -R@A | M) +wy - RX | M())]

The scope of the present model is not to give a
complete set of constraints to control the complex
line generalization process, but rather to

demonstrate properties of information theory.
Therefore, the information theory model pre-
sented calls for further research in order to
achieve a successful cartographic adaptation.

Choropleth Map

A staustical surface can be visualized in several
ways. One such method is a choropleth represen-
tation (Robinson et al. 1995). The traditional
design rules of choropleth maps include:

1. selection of the number of classes, and
2. determination of class limits.

Bjgrke (1992) presents an information theoretic
approach to compute an optimum number of
classes in choropleth maps. Based on this pro-
posal, the following model is set up:

Design Goal

Select as many classes as are acceptable to visual
perception, i.e., seek an optimal solution for how
much variation of the statistical surface can be
portrayed on the map.

Source Model
Assume a raster map. Select the map information
source:

(X, Top)
X = {x/, | (¢,7) e H?

|A(element x is an edge between two adjacent pixels)}

where

x; represents the color of the left-hand pixel
and the right-hand pixel of x

H  is the set of different colors of the map, and

H* s the Cartesian product H x H.

If the map has black and white pixels only, we
have: H={black,white}={b,w}. The set of entities
in this case: X= {X b » X b s Xyup » Xow } -

Stochastic Model

N(, 1)

=——+*—— foreach (/,r) € H?
Znecz N7 ¢

p(x/r) =

where
N(,r) is the number of edges with the color
attribute ({,r)

Entropy Model

Consider the map process M(k) which generates
choropleth maps with a different number 4 of
classes. The map index to be computed is:
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T The correlated map The random map
Class no. HN H{Y|X) R Class no. H(Y) H(¥|X) R
3 2.04 0.16 1.88 3 248 0.16 2.32
4 2.71 0.51 2.20 4 3.24 0.63 2.61
5 3.32 0.98 2.34 5 3.84 1.28 2.56
6 3.92 1.7 2.2 6 433 2.29 2.05

Table 2. Map statistics at different class numbers. The bold face numbers indicate the level of the channel capacity.

K= R(X | M)

Selection Criterion

Select the number of classes which corresponds to
Kmax = max [R(X | M(r))). In Bjgrke (1992), the
transition probabilities were estimated from an
investigation in which 30 subjects were asked to
distinguish between different gray values on some
test plates. Based on the transition probabilities
from the investigation above, entropy measures
are computed for two choropleth maps; one map
has a correlated spatial distribution of the classes,
while the other map has a random spatial distri-
bution of its classes. The entropy, equivocation,
and the useful information are computed at dif-
ferent class numbers. Table 2 shows the results of
the computation. The table demonstrates that the
correlated map gets its maximum value of
R=2.34 in five classes while the random map gets
its maximum value of R=2.61 in four classes.

Area Elimination

Elimination routines can be used to simplify area
features. The criteria may be

1. minimum feature size, or
2. proximity to neighboring features
(Robinson et al. 1995, 466).

Assume a map with equally sized area features
(Figure 10). Due to exaggeration, as a part of map
generalization, the map symbols may overlap or
may be very close to each other. This is often a
problem in small scale maps, and is the case for
house symbols in the 1:50,000 topographic maps
from the Norwegian Mapping Authority.

Design Goal

1. Keep as much of the variation as is acceptable
to visual perception;

2. eliminate features by proximity to neighbor-
ing features.

Source Model
Select the map information source:

(X,Pos)
X = {x | element x is an area feature}

Stochastic Model
Since the features are assumed to be of equal size,
their probabilities are modeled as:

plx) = ﬁ: for eachx e X

where

N, is the number of features.

The transition probabilities can be derived in a
similar fashion as in the dot map example.

Entropy Model

The second requirement of the design goal can be
met by eliminating the feature x which has the
greatest local equivocation, i.e., x corresponds to
max,ex [H(Y | x)]. The first design requirement can
be met by maximizing R(X). Therefore, two map
indexes should be sent to the map creation proc-
ess, one index which corresponds to the local
equivocation and another index corresponding to
the useful information of the map as a whole.

Selection Criterion
Eliminate the feature which corresponds to

_ max
K:= ‘e X[H(Y|x)]

Select the map which corresponds to
Kpax = R(X | M(x))

where
M(x) is a process which eliminates from the map.

The computation of H(Y | x) is based on the
last 2 in  Equaton (12) (Appendix):
HY 1x)= 2,y p(y | x)logep(y | x). For each ume
an area feature is eliminated from the map, a new
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Figure 10. Simplification by area elimination. Feature a is
a candidate for elimination in map (1). This feature is elimi-
nated in map {2).

candidate to be eliminated should be computed.
The process terminates when R(X) receives its
maximum value.

The computation of a candidate to be elimi-
nated will be illustrated. Related to Figure 10,
assume the following similarities:
pu@lay=p@lb)=ncley=1, p@alb)=p@k la)=0.1
and p(alc)=u(c la)=0.4. All other similarities
are assumed to be zero. The corresponding
transition probabilities are computed from Equa-
tion (7):

plala)=0.667, p(bla) = 0.067, p(cla) = 0.266,
p(blb) = 0.909, p(alb) =0.091, p(clc)=0.714,

and
plalc)=0.286.

The local equivocations are computed as:

H(Y la) = -0.667 log,0.667 - 0.067 log,0.067
~0.266log,0.266 = 1.16

Similarly, H(Y1b)= 044 and H(Ylc)= 0.86
give the priority list for feature eliminatdon:
(a,c.b), i.e., feature a is to be eliminated since it

generates a higher local equivocation than ¢ and
b.

Conclusions

This article describes a possible role for informa-
tion theory in automated map design or auto-
mated map generalization and demonstrates how
different entropy measures can be used as control
parameters in optimization at the syntactic level
of cartographic communication. This entropy-
based map design methodology has two main
components: map creation, and map evaluation.

The presented model breaks the entropy-based
map evaluation down into three operational ar-
eas: source model, stochastic model, and entropy
model. Several map examples demonstrate how
these three operational areas are used to structure
the design of map evaluation models. These map
examples: dot map, contour map, line generaliza-
tion, choropleth map, and area elimination, show
that information theory has a potential for auto-
mated information systems. But they also demon-
strate that definition of the similarity functions is
not a trivial task. The application of information
theory calls for further research into map percep-
tion by users.

The successful application of information the-
ory in map evaluation is likely to be based on a
successful solution of the following steps:

1. the selection of map information sources,
2. the modeling of spatial correlation, and
3. the modeling of similarity.
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Appendix

Properties of Shannon Entropy

The principles of Shannon entropy are presented
in several textbooks such as Shannon (1964) and
Klir and Folger (1988). This appendix briefly
reviews some concepts of Shannon entropy neces-
sary for the development of the theoretical basis
of this article.

Given two sets, X and Y, we can recognize three
types of entropies.

1. Simple Entropies
The first type of entropies are two simple entropies
based on marginal probability distribution,

> p(x)logQ;—(lx—) 2 p)logyplx)

H(X) =
xeX xe X

(8

Z pOlog—- p(y) __ I 10)logp0)

H®H = yeY

yet
9

The maximum entropy is obtained when all
events are equally probable, i.e.

Hpy.pe,...pn) < H(n n,w,%)=log2n

If the information source is continuous, the
entropy computation can be expressed as:

HX) = —J‘t: pllog,plx)dx

2. Joint Entropy
The second type is a joint entropy defined in terms
of the joint probability distribution on X x ¥,

> p(x,y)logyp(x,y)

HX. 1=~ (x,y) e XxY

(10)

3. Conditional Entropies
Third we can identify two conditional entropies
defined in terms of weighted averages of local
conditional entropies:

HxIn= - = PO I peIplogypely
yevY xeX

HEYIX) = 2 p) X pelnlogypylx) (1)
xeX yet

Based on the relation

1t can be shown that:

(13)
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which can be generalized to

H(XI’XQvXSy ...,X,‘)=
HX) + HX2 1 X)) +HX3 X, X9)
++ HXa 1 X1, X9, s Xno1) (14)

It can also be shown that

n
HX|,Xg,...Xx)< 2 HX) (15)

1=1

The equality holds if, and only if, the elements
from the » sets are independent in the probabilis-
tic sense. The property of Shannon entropy which
follows from Equation (15) is termed the subaddi-
tive property. From the rules of probability, two sets
X and Y are defined as independent if
p(x,9) = p(x)-p(y) for each xe X and each yeY. If

The first expression measures the amount of
information sent less the uncertainty of what was
sent. The second measures the amount of
received information less the part of this which is
due to noise. The third is the sum of the entropy
of the signals sent and the entropy of the signals
received less the joint entropy. The capacity of a
noisy channel corresponds to the maximum rate
of the transmission and is defined as:

C= max(R) (19)

Equation (18) follows when combining Equation
(13) and Equation (16) or when combining Equa-
tion (13) and Equation (17). The symmetry of
Equation (16) and Equation (17) can easily be
verified as follows:

the sets X and Y are independent, their joint en- Theorem
tropy is:
H(X) - HX | V)= H(Y) - H(Y | X)
H(X,Y) = Hp(x)p01), 2 1)pO2), - px 105, |
px2)p(1):p(x2)p(2), - P 2)PGN), - Proof
[ pn)p (1) PG YpB2), o plxndp(35)) HX)-
= X1)pPiXx9) ... Xn) )+ s 2)s ey s)
H(p(x1), plx2) f(H(l(;Jr}:I((f’)(yl) pQO2), - pOs),) H(XIY)=I-1(X)+ T T pixlylogepxly)
yet xeX
This property is termed the additive property of =H(X)+ T oy X /)(X)/)(yIX)l PG )
Shannon entropy. yeY ceX ry» 082
If the communication channel is noisy, it is not “HGO S |
in general possible to reconstruct the original =HX® L ppOology pepol
message with certainty by any operation on the ye¥ xeX PO
received signals. The information loss in a noisy =HX) LT T pep(ylxlogyplx)
channel is termed equivocation (Shannon and + yev xeX
Weaver 1964) and is expressed as a conditional
entropy. Let X and Y denote the set of input sig- + X plp(ylxlogep(ylx)
nals and the set of received signals respectively. yel¥ xeX
The useful information R is obtained by subtractin
from thﬂe source entropy the average rate ogf _ 32 pWp0Inlogap(y)
conditional entropy (equivocation). yel¥ xeX
=HX) X »p (x)og, p (x)
R=HX) -HX|V) (16) Tiex
= H(Y) - HY | 17
= H(X)(+)H(Y)(— H?)Z,Y) 218; 2 op) X pGllogep (i)
xe X yel
where T p(logp(»
H(X | Y) 1is the equivocation of the information yeY
source when the received signals are
known, and = HOO-HX) -HY | X) + HI)
H(Y | X) is the equivocation of the received =H(-HYIX)
signals when the signals sent are which completes the proof. -
known.
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