

WHAT IS Access
 Management

The control and regulation of the spacing and design of:

Driveways

Medians

Median Openings
000 Traffic Signals
Freeway Interchanges

What are the Benefits of Management

OPERATIONAL

- Reduced Delay
- Increased Capacity

ENVIRONMENTAL

- Improved Fuel Economy
- Reduced Emissions

SAFETY

- Fewer/Less Severe Accidents

Limit the number of conflict points

Separate the conflict points

Remove turning vehicles and queues from through movements

Connection
 Location \& Design

On-Site Circulation
\& Parking

CHANNELZATION

 CONFLCT REDUCTION To Achieve Goal \#1

CONFLICIS

36 conflicts

CONFLCTS

Separation of Conflicts

- Driveway Spacing
- Corner Clearance
- Median Opening Spacing

To Achieve Goal \#2

Access Management Standards

| | Well planned |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Class

$\stackrel{\leftrightarrow}{\text { Goal \#3 - Remove Turning }}$
Vehicles and Queues from Through Lanes

Techniques to remove turns and queues from the through movement

Turn radii Driveway flare Driveway width

Turn lanes Turn tapers

Better site design

Regulations and Florida Guidance on Access Management

RULE 14-96
Dealing with the Application and Permit Process

RULE 14-97
Dealing with the Access Management
Classification System and Standards for Access

STANDARD INDEX -

For geometric design and materials standards of driveways

MEDIAN HANDBOOK -

Access Management procedures on district teams

14-97 TheStandards Rule

Establishes Access Management Classifications

 1 = Freeways/Most Control TO
7 = Least Control
Procedure and Criteria for Establishing Classifications

Roads most intended for high speed/high volume traffic would have the highest standards
Established Interim Standards Based on Posted Speed Limits

14-96 The Permits Rule

* Applications \& Permits Prodecure
$\widehat{*}$ Closing \& Redesigning Existing Driveways
Local Government Coordination on Permits
$\stackrel{\omega}{*}$ Traffic Study Requirements
\leftrightarrow Non-Conforming Driveways
\leftrightarrow Performance Bond Requirements

Importance of Functional Cassification in Site Planning

All types of roads are needed for mobility

| INTERSTATES | CLASS 1 |
| :--- | :--- | :--- |
| INTRASTATES | |
| ARTERIALS | |

Promote Activity Centers with

 Supporting Roads

Access Relationship Between Functional Classes

PUBLCSTREET SITE GRCULATION

Major Arterial Access drive of a very large development (shopping center of $1,000,000$ GLA)

Minor Arterial
Access drive of a medium size development (500,000-750,000 GLA);
Ring road for a very large development
Major Collector
Circulation road connecting parking areas of a large development; Access drive of a medium development

Minor Collector

Local

Circulation at end of parking rows; access drive to convenience development

The aisles between parking stalls;
Driveway of neighborhood shopping center

Internal Circulation Patterns

General Review

 of Site PlanSaile. $\frac{R e a^{2}}{10} \ln ^{2}$ ding
n
Parking
ansintion inemal ciran Access
nable

Driveways = Intersections

Source: 1990 AASHTO Greenbook

Where drivenays should not be

Functional
Area

Driveways should not be situated within the functional boundary of at-grade intersections. This boundary would include the longitudinal limits of auxiliary lanes ...

AASHTO Greenbook

Drivevay Location Principles

- Away from intersections

Access directed to side streets
No backout
Avoid driveways along right turn lanes
Use connection spacing standards No "Open Frontages"

SPACING BETWEEN MEDIAN OPENINGS

Access Class	Medians "Restrictive" physically prevent vehicles crossing "Non-Restrictive" allow turns across any point	Connection Spacing (feet)		Median Opening Spacing		Signal Spacing
		>45mph	\$45mph	Directional	Full	
2	Restrictive w/ Service Roads	1320	660	1320	2640	2640
3	Restrictive	660	440	1320	2640	2640
4	Non-Restrictive	660	440			2640
5	Restrictive	440	245	660	$2640 /$ 1320	$2640 /$ 1320
6	Non-Restrictive	440	245			1320
7	BothMedianTypes	125		330	660	1320

Functional Area of an Intersection

Departure Side Functional Area for Urban/Suburban Area

Departure Side Functional Area for Urban/Suburban Areas

	Meters	Feet
Minimum	75	245
Desirable	100	350

SITE

Where Should Access Go?

Corner Clearance

Helps customers

Note lack of corner clearance in this downtown location. Perhaps this entrance should have been located to the side street.

INIERCHANGE AREAS

INIERCHANGE AREA

REFERENCE 14-97.003(1)(j)1-3
$\stackrel{\rightharpoonup}{*}$

Arterial C (45mph)

1/4 Mile or to intersection (whichever is shorter)

440 feet

INIERCHANGE AREA

REFERENCE 14-97.003(1)(j)1-3

Arterial C (50mph)

1/4 Mile or to intersection (whichever is shorter)

660 feet

Direct Connections

A connection will be made
(full, right in/out, right out only, etc.)
on every abutting state highway -- UNLESS:

"A property owner shall be granted a permit for an access connection to the abutting state highway, unless the permitting of such access connection would jeopardize the safety of the public or have a negative impact upon the operational characteristics of the highway."

335.184(3)FS

\Leftrightarrow There is a safety concern (such as sight distance or heavy conflicting volumes
\Leftrightarrow The connection would have a negative impact on operations
\Leftrightarrow The property is on a freeway or service road 335.181 (7)

" Nothing in this subsection limits the department's authority to restrict the operational characeristics of a particular means of access."
 ```\[335.184(3)(d) F S \]```

Nothing in the law limits the Department's authority to restrict the driveway's allowed movements such as right-in only or right out only

What Should be in a Site Plan?

Access Permit Categories

Access Permit Categories - Rule 14-96		
Category	Vehicles per Day	Fees
A	to 20 VPD	
B	$21-600$	$\$ 50$
C	$601-1,200$	$\$ 1,000$
D	$1,201-4,000$	$\$ 2,000$
E	$4,001-10,000$	$\$ 3,000$
F	$10,001-30,000$	$\$ 4,000$
G	Over 30,000	$\$ 5,000$

NECESSARY INFORMATION

Site plan

- Basic geometry of site/ Aerial photographs
- Detailed drawing of access, circulation \& parking
- Landscaping details
- Location of existing/ proposed utilities
- Finished grades and contours Neighboring properties

Critical measurements (Rule 14-97)
Distance between driveways
Corner clearance
Median opening spacings
Traffic data critical to the site analysis
Look especially for conflicts (left turns)

Critical Measures on SitePlan

Distances to Neighboring

Driveways
Intersections
Median Openings

660 feet if posted speed is 45 mph or less 1,320 feet if posted speed is greater than 45 mph

What minimuminformation is required for a site plan review?

For developments over 600 daily trips:
今 All proposed driveways $600+$
\Leftrightarrow Any internal site circulation element impacting the public road system
\Leftrightarrow Right of way lines
\Leftrightarrow Neighboring property lines
\leftrightarrow Critical road features and distance measures
\Leftrightarrow Distance from neighboring driveways, median openings, and signals

> The larger the project, the more detail required

Traffic Study Requirements

For developments over 1,200 daily trips:

Source: 14-96

Trip generation analysis (peak hour)
Critical peak hour turning movements
Traffic operations analysis of sufficient detail

The larger the project, the more detail required

Overall Review of Access Plans

1. Driveway location - Meet Rule 14-97 standards? Located in the functional area?
2. Total number of driveways - Can number of driveways be reduced?

3. Driveway radius or flare - Getting vehicles on and off
4. Driveway width - Too wide?
5. Auxiliary lanes - Right or left turning traffic?
6. Angle of driveways - One-way drives
7. Driveway grade - Entry and exit at safe speeds
8. Sight distance - Are obstructions in the line of sight?
9. Circulation pattern - Circulation to take place on-site
10. Projected conditions - Is there enough storage?
11. Physical construction design - Construction materials sufficient?

Guidelines for External Study Area

Traffic Assessment Categories A and B

1-600 trips per day
Traffic generally of little impact

> Examples Category A \& B Single Family Home
> Duplex
> Mom and Pop Catering

Traffic Assessment
 Categories C

$601-1,200$ trips per day
Evaluate driveway movements for potential problems

- You may require study if you have concerns

Examples Category C
50 home subdivision
30,000 sq ft Medical Office
100 room Motel
50,000 sq ft General Office

Traffic Assessment
 Categories D

A comprehensive study may be necessary
1,201-4,000 trips per day
Evaluate driveway movements
Assess impacts on nearby intersections

Examples Category D

1,201-4,000 trips per day

300 home subdivision
35,000 sq ft Shopping Center

- neighborhood size

1,000 sq ft C onvenience Market

- with 6 fueling stations

300,000 sq ft General Office

- approx. 25 acres at suburban densities

Traffic Assessment - Category E

4,001-10,000 trips per day
Evaluate driveway movements
Assess impacts on several nearby intersections

Examples Category E

4,001 to 10,000 trips per day

 400,000 sq ft of General Office 150,000 sq ft shopping center 500 home subdivision

Traffic Assessment - Cat egory F

10,000-30,000 trips per day Evaluate driveway movements Assess impacts on several nearby intersections Includes regional and long range impacts

Examples Category F

- 10,000-30,000 trips per day
- 1.4 Million sq ft General Office
- 200,000 sq ft shopping center
- 2,000 Home subdivision

Traffic Assessment - Category G

Over 30,000 trips per day
Assess impacts on intersections and wide range of facilities Includes regional and long range impacts

Examples - Category G

-1.5 Million sq ft Regional Mall -6 Million sq ft General Office -Large mixed use

TURN LANES

FULL RIGHT TURN LANE

TAPER

(Not a full right turn lane)

Right Turn Lane

Anytime right turns are expected to be greater than 40 right turns per hour, a separate right turn lane should be considered

Right-Turn Lane Guidelines

2 Iane highways

4 lane high speed roads

| | Full-Width
 Turn Lane | |
| :--- | :--- | :--- | :--- |
| | | |
| Taper | | |
| | | |

Total Peak Hour Approach Volume (VPH)

* These guidelines may be inappropriate in built-out urban areas

Conditions for providing a separate right turn lane for less than warranted traffic:

- Heavier than normal peak flows
- High operating speeds - such as 55 mph
- Site in an undeveloped or developing area
- Poor internal site design causing potential of "backups" on the through lanes
- Local government policy

Conditions for not requiring a right turn lane where possibly warranted:

Pedestrian concerns

Dense or built-out corridor where space is limited
Where sufficient length or property width is not available for appropriate design

Local government policy

Where conditions may warrant a separate right turn and it cannot be provided,
a 35-50ft radius should be provided on the approach edge of the connection

Design guidance not in Rule 14-97

CONTINUOUS RIGHT TURN LANES

- May encourage use as a through-lane
- May lead to confusion where cars will turn right into driveway or street?

ACCESS/ SERMCE ROADS

Problems with frontage roads

Even one-way frontage roads (the safest) create additional conflict and confusion close to signalized intersections

Unless carefully designed and coordinated, they work OK -until you put traffic on them

Full of unfamiliar movements
 Stop signs have been added to frontage road due to confusion on right of way.

Confusing intersection as frontage road intersects with a major side street.

Residential Frontage Road

DRIVEWAY WDTH

Adequate Driveway Width can also help to get turning vehicles off the road at greater speed and with less encroachment into the oncoming driveway traffic

The faster the turning vehicle can get off the road, the less conflict with through-movement vehicles

Flarels Used Instead of Turn Radius in Curb and Gutter Sections

The minimum distance for flare is $10 \mathrm{ft}(3.0 \mathrm{~m})$

Standard Index No. 515

Pedestrian exposure due to very large radii

Standard Index \#515

TRIP GENERATION EXAMPLES

1-20 trips/day or 1-5 tripss/hour	1 or 2 single family homes
21-600 trips/day or 6-60 trips/hour	Quadraplex Apartment building <60 units Small office in converted home Mom \& Pop business
601-4,000 trips/day or 61-400 trips/hour	Small "STRIP" shopping center (20-75K ft) Gas station/Convenience marke
over 4,000 trips/day or over 400 trips/hour	150 K ft shopping centergrocery/drug store $+10-15$ smaller stores (9,000 trips split w/ 2 driveways)

if they have more than one driveway, there wil be less traffic on each driveway

Important Highlights of "General Notes" Turnout Section Index \#515
\& Driveway separation strandards handled in Rule 14-97

* Standard Index \#515 not to be used for "Full City/Local Street Intersection Design"
* Connections with over 4,000 VPD should be designed as a "full intersection" in cooperation with local government standards

Drivenay

 ConfigurationWhen driveway volumes exceed 500 per day a three-lane cross-section should be considered

Lack of pavement markings

Clear pavement markings.

Drivenay Channelizing Island

Channe Islands

"Pork chop" islands cannot control left turns without a median on the major road.

"Pork chop" islands cannot control left turns without a median on the major road. Note car going around the driver wanting to turn left where it is not allowed.

"Pork chop" islands cannot control left turns without a median on the major road. Note car going around the driver wanting to turn left where it is not allowed.

Pork chop" islands cannot control left turns without a median on the major road. With a median, these pork chops provide useful guidance to the driver.

MinimumSize of Channelization Island

Minimum:

area $7 \mathrm{~m}^{2}$ or $75 \mathrm{ft}^{2}$ wain 1.2 m or 4 ft

More desirable: area $9 \mathrm{~m}^{2}$ or $100 \mathrm{ft}^{2}$ widh 1.8 m or 6 ft
This allows for pedestrians (even wheelchairs)

Chanelizing islands need to be larger than this

骦

RIGHTTURN GHANNELIZATION DESIGN

Grades in Standard Index

Maximum =

10%

Commercial

Remember: Homes turn into commercial where roads are improved.

VERTICAL DRIVEWAY GEOMEIRY

Roadway Superelevation

Cross-section

Sight Distances

Stopping Sight Distance

Sight Distance For Right \& Left Turns

Sight Distance For Crossing manuever

MinimumStopping Sight Distance

Operating

 Speed (mph) (feet)

INIERSECIION SIGHT DISTANCE

Right and Left Tưn Sight Distance

Sight Distance

Source: Standard Index \#546

Design Speed	
Speed (mph)	Sight Distance at Intersection
35	470 ft
40	580
45	710
50	840
55	990
60	1,150

Sight Distance for U-Turn at Unsignalized Median Opening

Speed (mph)	Sight Distance (ft)
35	520
40	640
45	830
50	1040
55	1250

Guidelines for left-turn lane on two-lane highways 40 mph / 600 veh opposing / 5\% lefts of 410

Left turn volumes to the side street exceed 20 vehicles per hour

Intersection geometrics result in inadequate sight distance

Source: AASHTO Greenbook 1990 pg. 791

Recommended taper

4:1 FDOT recommended taper

- More Storage
- Less chance of a vehicle blocking through lane
- Most appropriate in urban areas with "informed" drivers

8:1 Previously recommended

Some Median and Median Opening Principles

SPACING BETWEEN MEDIAN OPENINGS

Access Class	Medians "Restrictive" physically prevent vehicles crossing "Non-Restrictive" allow turns across any point	Connection Spacing (feet)		Median Opening Spacing		Signal Spacing
		>45mph	\$45mph	Directional	Full	
2	Restrictive w/ Service Roads	1320	660	1320	2640	2640
3	Restrictive	660	440	1320	2640	2640
4	Non-Restrictive	660	440			2640
5	Restrictive	440	245	660	$2640 /$ 1320	$2640 /$ 1320
6	Non-Restrictive	440	245			1320
7	BothMedianTypes	125		330	660	1320

No More Median Removals

Note the medians on this road.

No openings across left turn lanes

Avoid openings across right turn lanes

No openings that fail

\leftrightarrow What is Median Opening Failure?

Too many stored vehicles

Excessive deceleration in through lane

No openings in functional area

00

Cars stacked up near a signalized intersection.

What is the functional area?

Reaction Time

Standard Index \#301

Storage and deceleration requirements
@ $45 \mathrm{~mm}(1)$
\#301 has no standard for min. queue

185 ft Storage @ 25 ft per vehicle

Standard Index \#301

45 mphexample

mph	mph	Total Decel
Design Speed	Entry distance "L" ft	
35	25	145
45	35	185
50 Urban	$40 / 44$	240
50 Rural	$40 / 44$	320
55 Rural	48	385

Recommended Queues

As measured or projected by traffic study

4 cars urban minimum

2 cars rural
or small town

unless is serves a major generator (large discount store, shopping center, etc.)

Average queve

Recommended Left Turn Queue for Unsignalized Openings

Lefts/Hour	Average Demand Per Interval	Recommended Queue	Recommended Queue FIHS
50	1.7	3	4
60	2.0	4	5
80	2.7	5	6
100	3.3	6	7
120	4.0	7	8
Rural or			
Small town			

Assumptions:

1. 120 second interval
2. Approx. probability of "success" (storing all vehicles) 90\% non-FIHS, 95\% FIHS

Adjustment for Large Vehicles

Percent	Average Storage
Trucks	Length per Vehicle

Small Town Queues

Be aware that major shopping centers and traffic generators exist here, too

They may require more than the minimum
At a minimum:
Check the traffic studies done by thedeveloper or city

One Very Tight Possible Scenario

Urban conditions @ 45 mph design

640 ft

More realistic minimumscenario

Urban conditions @ 45 mph design

District Median Access Management Teamin Each District

\Leftrightarrow Decision can be made by responsible engineer
$\Leftrightarrow 10 \%$ for "Full" openings
District can be more strict
\Leftrightarrow Directional openings - "case-by-case"

Remember:
even less than 10\% deviations might be a problem

Favorable Conditions for Variance

- Alleviate significant congestion?
© Joint access

Other Conditions for Variance

Un-relocatable or unique historic features
Where strict adherence would cause safety problem

Where a directional would replace a "full" opening

Emergency vehicle openings

Unfavorable Conditions for Variance

X Intrastate system
X Where any opening is unsafe example: SR 436 near l-4

Openings in functional area of intersection
High crash locations
Where alternatives exist

Placement of Drivevays
 Near Median Opening's

Staying ahead of problems

Rural multilane in suburbanizing areas

\Leftrightarrow Change bullet nose to storage
\Leftrightarrow Close under-used openings

Rural "Bullet" Nose

Summary of Standards and Recommendations

Minimum	$\mathbf{4 0}$ mph or less	$\mathbf{1 5 . 5}$ feet	Reconstruction Projects
Minimum	45 mph	19.5 feet	
Minimum	55 mph or less	22 feet	
Guidance from Plans Preparation Manual	55 mph or greater	40 feet	
Recommended	4 lane highways	30 feet for single lefts 42 feet for dual lefts	
Recommended	6 lane highways	22 feet for single lefts 34 feet for dual lefts	

Median Wdth

Minimum	$\mathbf{4 0}$ mph or less	$\mathbf{1 5 . 5}$ feet	Reconstruction Projects
Minimum	45 mph	19.5 feet	
Minimum	55 mph or less	22 feet	
Guidance from Plans Preparation Manual	55 mph or greater	40 feet	
Recommended	4 lane highways	30 feet for single lefts 42 feet for dual lefts	
Recommended	6 lane highways	22 feet for single lefts 34 feet for dual lefts	

Directional openings in a narrow median requires the use of $1120: 96$ painted areas to encourage the allowed movements.

ON-SITE GRCULATION \& PARKING

On-SiteCharacteristics

 to Evaluate-.- Vehicular conflict points " T " intersections on-site
(0) Sight distances

ㅡㅡㅡㅡㅡㄹ Delineation of roadways
$=-$ Width of roadways

Do you really want people backing out of parking in the major aisle of the site?

PUBLCSTREET SITE GRCULATION

Major Arterial

Minor Arterial

Access drive of a medium size development (500,000-750,000 GLA);
R ing road for a very large development
Major Collector
Circulation road connecting parking areas of a large development;
Access drive of a medium development
Minor Collector

Local

Access drive of a very large development (shopping center of $1,000,000$ GLA)

Circulation at end of parking rows; access drive to convenience development

The aisles between parking stalls;
Driveway of neighborhood shopping center

Insufficient Connection Depth

Connection Depth

Generally adequate driveway connection depth for major entrances

	Meters	Feet
Regional Shopping Centers (malls)	75	250
Community Shopping Center (supermarket, drug store, etc.)	25	80
Small Strip Shopping Center	10	30
Regional Office Complex	75	250
Office Center	25	80
Other Smaller Commercial Developments	10	30

Throat depth for small shopping center.

Provide For On-site Circuity

On-SiteCharacteristics to Evaluate

\Leftrightarrow Pedestrian Concerns
\Leftrightarrow Special Concerns

- Fire Lanes
- Large Vehicle Concems
- Loading Docks
- Solid Waste
- Treament of Outparcels

The view the pedestrian sees as they walk to the development through the back.

Excessive Queues at Drive-Through

Lunch hour queue. Yo quiero Taco Bell.

Drive-Thru Facility Queue Distances

Use	Observed Queue	Lane Length Required	
Fast-Food (hamburger)	9	$60 \mathrm{~m}(198 \mathrm{ft})^{*}$	
Bank	7	$47 \mathrm{~m}(154 \mathrm{ft})$	
Car Wash (self-service)	2	$13 \mathrm{~m}(44 \mathrm{ft})$	
Day Care	9	$60 \mathrm{~m}(198 \mathrm{ft})$	
Dry Cleaner	2	$13 \mathrm{~m}(44 \mathrm{ft})$	

Source: Queuing Areas For Drive-Thru Facilities, ITE Journal, May 1995.
*Queue length per vehicle is 6.5 m (22ft), which is less than the average $7.5 \mathrm{~m}(25 \mathrm{ft})$ used for queues on the road system.

Some Site Planning Techniques

Shared Rear Lot Minimizes Drivenays

Car courtyards allow vehicles to enter and exit forwards

Wde Lots Give More Flexbility

Wide lots allow for large driveways so vehicles can enter and exit forwards

Use of Side Street Access

Development without direct driveway access.

Use of SideStreet Access To Serve Inside Lots

Lots fronting major street with hammerhead car access

J oint Access Issue

Sometimes lack of depth causes conflict.

Strategies for Residential

 Site Planning* Require reverse frontage Primary access should be to local streets

REQUIRE

ARTERIAL

Encourage Transit-Friendly Site Design
 不象

Preferred

Coordinate transit and pedestrian access

Residential Subdivision Design

Non-Highway Corridors 14-96.007(10)

- No automatic right to access
- Corridor considered an "intervening property"

Access Management \&Site Planning

NOT the other way around

